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EDITORS’ PREFACE

THE increasing specialisation in biological inquiry .
has made it impossible for any one author to deal.
adequately with current advances in knowledge. Jt™

has become a matter of considerable difficulty forh
research student to gain a correct idea of the, present
state of knowledge of a subject in which he Rifnself is
interested. To meet this situation the\text-book is
being supplemented by the monograph\J

The aim of the present series is ta‘provide authori-
tative accounts of what has been dorie in some of the
diverse branches of bioIogica,}.’i‘n’{?estigation, and at
the same time to give to those who have contributed
notably to the developmedt of a particular field of
inquiry an opportunity'ef presenting the results of
their researches, scaftered throughout the scientific
journals, in a ngo'ré extended form, showing their
relation to what” has already been done and to
problems that f€main to be solved.

The prés\ent generation is witnessing “ a return to
the prachite of older days when animal physiology
was ‘m}t yet divorced from morphology.” Con-
spifuous progress is now being seen in the field of

neral physiology, of experimental biology, and in
the application of biclogical principles to economic
problems. Often the analysis of large masses of
data by statistical methods i1s necessary, and the
biological worker is continually encountering advanced
statistical problems the adequate solutions of which

vil
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are not found in current statistical text-books, To
meet these needs the present monograph was pre-
pared, and the early call for the second and later
editions indicates the success attained by the author
m this project,

F. A. E. C.
D. W. €.
l@‘
'\*f‘*?}
l/& :
N\
7 \/
i
A\
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PREFACE TO TENTH EDITION

For several years prior to the preparation of this\
book, the author had been working in somewlat)
mtimate co-operation with a number of b:olog{cal
research departments at Rothamsted ; the bon was
very decidedly the product of this ci fdinstance.
Daily contact with statistical problefs as they
presented themselves to laboratory workers stimulated
the purely mathematical researchésétipon which the
new methods were based. It\was clear that the
- traditional machinery mculcated by the biometrical
school was wholely unsuited to the needs of practical
research, The futile "eiafboratlon of innumerable
measures of correlati,on and the evasion of the real
difficulties of sampling problems under cover of a
contempt for smalksamples, were obviously beginning
to make its pretentions ridiculous. These procedures
were not oplg/ill-aimed, but, for all their elaboration,
not suffiieiitly accurate. Only by tackling small
sample'ptoblems on their merits, in the author’s view,
did\it" seem possible to apply accurate tests to
\pi”aétmal data, With the encouragement of my
\dolleagues, and the valued help of the late W. S. Gosset
{* Student ”), his assistant Mr E. Somerfield, and
Miss W. A. Mackenzie, the first edition was prepared
and weathered the hostile criticisms inevitable to such
a venture.
To-day exact tests of significance need no apology.
The demand steadily increasing over a long period

=
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for a book designed originally for a much smaller
public has justified at least some of the innovations in
its plan which at first must have seemed questionable.
‘The author was impressed with the practical import-
ance of many recent mathematical advances, which to
others seemed to be merely academic refinements.
He felt sure, too, that workers with research experience
would appreciate a book which, without entering iritd
the mathematical theory of statistical methods, shetild
embody the latest results of that theory, présénting
them in the form of practical procedures appropriate
to those types of data with which reseafeéh workers
are actually concerned. The practical\dpplication of
general theorems is a different art freth their establish-
ment by mathematical proof. ¢ requires fully as
deep an understanding of theitaneaning, and is, more-
over, useful to many to whom the other is unnecessary.
To carry out this plan ¢onsiderable additions have
had to be made with¥ach new edition to illustrate
extensions and imgroved procedures of established
value, K¢ \ : .

In most c‘a’sé the new methods actually simplify
the handling\of the data. The conservatism of some
university Courses in elementary statistics, in stereco-
typing:.’g}ﬁecessary approximations and inappropriate
conventions, still hinders many students in the use of
e;;é}t methods. In reading this book they should try

~(td remember that departures from tradition have not
\/been made capriciously, but only when they have been
found to be definitely helpful.

Especially in the order of presentation, the book
bears traces of the state of the subject when it first
appeared. More recent books have, rightly from
the teacher’s standpoint, introduced the analysis of
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variance earlier, and given it more space. They have
thus carried further than I the process of abstracting
from the field formerly embraced by the correlation
coefficient, problems capable of a more direct approach.
In excusing myself from the difficult task of a funda-
mental rearrangement, I may plead that it is of real
value to understand the problems discussed by earher\\
writers, and to be able to translate them into #heh
system of ideas in which they may be more srmpiy Jor
more comprehensively resolved. [ have t@eﬁefore
contented myself with indicating the Adlysis of
variance procedure as an alternative approai}h int some
early examples, as in Sections 24 and2%°I.

With a class capable of ma,s'termg the whole
hook, I should now postpone thésmatter of Sections
30 to 40, dealing with corrglation, until a further
experience has been gained of the a.pplzca.uon of the
Analysis of Variance, but s.hould later give time to the
ideas of correlation an partial correlation for their
importance in unders\andmg the literature of quantita-
tive biology, wh1bh has been so largely influenced
by them. ¥

In the seCond edition the importance of providing
a strlkmg}nd detailed illustration of the principles of
sta.tlsr,}sal estimation led to the addition of a ninth
chapt%r The subject had received only general
,.df‘cussmn in the first edition, and, in spite of its

Spractical importance, had not yet won sufficient
attention from teachers to drive out of practice the
demonstrably defective procedures which were still
unfortunately taught to students. The new chapter
superseded Section 6 and Example 1 of the first
edition ; in the third edition it was enlarged by two
new sections {57.1 and 57.2) illustrating further the
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applicability of the method of maximum likelihood,
and of the quantitative evaluation of information.
Later K. Mather’s admirable book 7/%e Measurement
of Linkage in Heredity has illustrated the appropriate
procedures for a wider variety of genetical examples.
In Section 27 a general method of constructing the
series of orthogonal polynomials was added to the thi
edition, in response to the need which is felef with
Tespect to some important classes of data, o use
polynomials of higher degree than the ﬁﬁ@“ Simple
and. direct algebraic proofs of the methodsof Sections
28 and 28-1 have been published by Viss F. E. Allan.
In the fourth edition the Appendix to Chapter 111,
- on technical notation, was er\l‘tjj'e‘ly rewritten, since
the inconveniences of the m®went notation seemed
by that time definitely toqutweigh the advantages
formerly conferred by itsVamiliarity. The principal
new matter in that edition was added in response to
the increasing usgl{ef the analysis of covariance,
which is explaip€d® in Section 49.1. Since several
writers had fotigd difficulty in applying the appro-
priate tests off stgnificance to deviations from regression
formulze, #R18 section was further enlarged in the fifth
«edition.;>”
€r new sections in the fifth edition were 21.01,
giving a correction for continuity recently introduced
~By F. Yates, and 21-02 giving the exact test of signifi-
\Jcance for 2 x 2 tables. Workers who are accustomed
to handle regression equations with a large number
of variates will be interested in Section 29-1, which
provides the relatively simple adjustments to be made
when, at a late stage, 1t is decided that one or more
of the variates used may with advantage be omitted,
The possibility of doing this without laborious
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recalculations should encourage workers to make the
hist of independent variates included more compre-
hensive than has, in the past, been thought advisable.

Section 5, formerly occupied by an account of the
tables available for testing significance, was given to
a historical note on the principal contributors to the
development of statistical reasoning.

In the sixth edition Example 15-1, Section 22\
gave a new test of homogeneity for data with”
hierarchical subdivisions. Attention was also~aatled
to Working and Hotelling’s formula for the, é&ﬁn}jling
error of values estimated by regression, and\n Section
29-2 to an extended use of successive sunmation in
fitting polynomials. ‘\\

[ am indebted to Dr W. .E‘.;‘;Deming for the
extension of the Table of # to the 0.1 per cent. level
of significance. Such high leVtls of significance are
especially useful when thg;'té’st we make is the most
favourable out of a number which & priori might
equally well have begfi ‘chosen.

Two changes,4n’ the seventh edition may be
mentioned. Seétioh 27 was expanded so as to give
a fuller intgddiuction to the theory of orthogonal
polynomialsy”by way of orthogonal comparisons
betweél\iﬁi‘)é.ervations, which most practical workers
find eAster to grasp. The arithmetical construction
is simpler by this path, and the full generality of the
ofiginal treatment can be retained without very
complicated algebraic expressions. A useful range of
tables giving the serial values to the fifth degree is
now available in Stetistical Tables.

Section 49-2 was added to give an outline of the
important new subject of the use of multiple measure-
ments to form the best discriminant functions of which
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they are capable. The tests of significance appropriate
to this process are approximate and deserve further
study. The diversity of problems which yield to this
method is very striking.

A section new in the ninth edition is given to the
test of homogeneity of evidence used in estimation,
since this subject is the natural and logical com-
plement to the methods of combining independent
evidence illustrated in the previous examples. In
the tenth edition is an extension of the ;‘\\ié'St to find
fiducial limits for the ratio of means{df regression
coefficients (Section 26-2), \/ :

The sections of Chapter VIIK,\Mthe Principles of
Experimentation, which have always been too short
to do justice to aspects of heé subject other than
the purely statistical, havi, since developed into an
independent book, 7% Zesign of Experiments (Oliver
and Boyd, 1933, 1937.9942, 1946). The tables of this
book, together with' a number of others calculated
for a variety o_foér.}ttistical purposes, with illustrations
of their use, "ate now available under the title of
Statistical Tables (Oliver and Boyd, 1938, 1943, 1946).
Both of thése publications relieve the present work of
claimg,:fbf expansion in directions which threatened
to ok’str"uct its usefulness as a single course of study.
The serious student should make sure that these

(Jolumes also are accessible to him.

\ It should be noted that numbers of sections, tables
and examples have been unaltered by the insertion of
fresh material, so that references to them, though not
to pages, will be valid irrespective of the edition used.

DEPARTMENT OF GENETICS, CAMBRIDGE
- 1046
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INTRODUCTORY ~
N
1. The Scope of Statistics :::.':

THE sclence of statistics is essentlally a branch of
Applied Mathematics, and may be reg*a}ded as
mathematics applied to observational da?ta As in
other mathematical studies, the same fotrntla is equally
relevant to widely different groups: of‘sub_]ect matter.
Consequently the unity of the \different applications
has usually been overlookeds the more naturally
because the development of) \the underlying mathe-
matical theory has beeng sitich neglected. We shall
therefore consider thé subject-matter of statistics
under three different aspects, and then show in more
mathematical lapguéage that the same types of prob-
lems arise in gvety case. Statistics may be regarded
as (i) the,§tidy of populations, (ii) as the study
of var:atmp, (iii) as the study of methods of the
reductiér) of data.

T\he original meaning of the word  statistics "’
suggests that it was the study of populanons of human
“Peings living in political union. The methods
developed, however, have nothing to do with the
political unity of the group, and are not confined
to populations of men or of social insects. Indeed,
since no observational record can completely specify
a human being, the populations studied are always

to some extent abstractions. If we have records of
1 B



2 STATISTICAL METHODS [§ 1

a

the stature of 10,000 recruits, it is rather the popula-
tion of statures than the population of recruits that is
open to study. Nevertheless, in a real sense, statistics
is the study of populations, or aggregates of indi-
viduals, rather than of individuals, Scientific theories
which involve the properties of large aggregates of.
individuals, and not necessarily the properties of the
individuals themselves, such as the Kinetic Theory
of Gases, the Theory of Natural Selection, &2 the
chemical Theory of Mass Action, are essentially
statistical arguments, and are lable to n}'@iﬁterpret&
tion as soon as the statistical nature of the argument
is lost sight of. In Quantum Theg¥y this is now
clearly recognised. Statistical methdds are essential
to social studies, and it is priacipally by the aid of
such methods that these studiés may be raised to
the rank of sciences. Thig\particular dependence of
social studies upon s_tatj'si:i'(’:‘al_ methods has led to the
unfortunate misapprehension that statistics is to be
regarded as a braneh of economics, whereas in truth
methods adequa.teﬁf{’i the treatment of economic data,
in so far as these exist, have only been developed in
the study ofibiblogy and the other sciences.

The idea~of a population is to be applied not only
to Iivig]g‘@.bf even to material, indtviduals. If an ghser
vatigly, ‘such as a simple measurement, be repeated
jpidi;‘ﬁhitely, the aggregate of the results is a popu-

dtion of measurements. Such populations are the
particular field of study of the Theory of Errors, one
of the oldest and most fruitful lines of statistical
investigation.  Just as a single observation may
be regarded as an individual, and its repetition as
generating a population, so the entire result of an
extensive experiment may be regarded as but one of
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a population of such experiments. The salutary habit
of repeating important experiments, or of carrying
out original observations in replicate, shows a tacit
appreciation of the fact that the object of our study
is not the individual result, but the population of
possibilities of which we do our best to make our .
experiments representative. The calculation of means\"
and standard errors shows a deliberate attemp’titgy
learn something about that population. Y
The conception of statistics as the study, &f'yvaria-

tion is the natural outcome of viewing thé subject .as
the study of populations’; for a populawon of indi-
viduals in all respects identical is completely described
by a description of any one indjyidtal, together with
the number in the group. T{l?e ‘populations which
are the object of statistical\study always display
variation in one or quje”: respects. To speak of
statistics as the study..']‘af‘ variation also serves to
emphasise the contralt between the aims of modern
statisticians and ,t@}se of their predecessors. For,
until comparat:i\’ré?y recent times, the vast majority
of workers in\this field appear to have had no other
aim than toyascertain aggregate, or average, values.
The vaslation itself was not an object of study, but
was récognised rather as a troublesome circumstance
whjié.l\q detracted from the value of the average. The

~érvor curve of the mean of a normal sample has been

NAamiliar for a century, but that of the standard devia-
#on was the object of researches up to 1915. Yet,
from the modern point of view, the study of the causes
of variation of any variable phenomenon, from the
yield of wheat to the intellect of man, should be begun
by the examination and measurement of the varjation
which presents itself.
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The study of variation leads immediately to the
concept of a frequency distribution, Frequency dis-
tributions are of various kinds ; the number of classes
in which the population is distributed may be finite or
infinite ; again, in the case of quantitative variates,
the intervals which separate the classes may be finiee
or infinitesimal, In the simplest possible case,\;‘n
which there are only two classes, such as malevind
female births, the distribution is simply specified by
the proportion in which these occur, as fgf"“example
by the statement that 51 per cent. of ;ﬁe births are
of males and 49 per cent. of femalesa\n other cases
the variation may be discontinuo Jbut the number
of classes indefinite, as with the(pumber of children
born to different martied cp\lflpies; the frequency
distribution - would then show the frequency with
whicho, 1,2 ., . children were recorded, the number
of classes being sufficient to include the largest family
in the record. The variable quantity, such as the
number of chilcj{e}t, 15 called the variate, and the
frequency distfibution specifies how frequently the
variate takes each of its possible values. In the
third group™of cases, the variate, such as human
stature, Ghay take any intermediate value within its
ranggef variation; the variate is then said to vary
661&}:?111101151)7, and the frequency distribution may be

&%pressed by stating, as a mathematical function of

<

the variate, either (i) the proportion of the population
for which the variate is less than any given value,
or (ii) by the mathematical device of differentiating
this function, the (infinitestimal) proportion of the
population for which the variate falls within any
infinitesimal element of jts range.

The idea of a frequency distribution is applicable
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either to populations which are finite in number, or to
infinite populations, but it is more usefully and more
simply applied to the latter. A finite population can
only be divided in certain limited ratios, and cannot in
any case exhibit continuous variation. Moreover, in
most cases only an infinite population. can exhibit

accurately, and in their true proportion, the whole of*

~

N

the possibilities arising from the causes actually at\,

work, and which we wish to study. The actual”

observations can only be a sample of such possibilities.
With an infinite population the frequency distribution
specifies the fractions of the populationwassigned to
the several classes ; we may have (i) a fiotte number
of fractions adding up to unity as i,n;‘%he Mendelian
frequency distributions, or (ii) am\infinite series of
finite fractions adding up to unity, or (iii) a mathe-
matical function expressing shig) fraction of the total
in ¢ach of the infinitesimal eléthents in which the range
of the variate may be divided. The last possibility
may be represented by(a frequency curve; the values
of the variate are get.out along a horizontal axis, the
fraction of the tetal population, within any limits of
the variate, bei\ng }epresented by the area of the curve
standing op\thd corresponding length of the axis. It
should beynoted that the familiar concept of the
frequemey curve is only applicable to an infinite
population with a continuous variate.
~\The study of variation has led not merely to
éasurement of the amount of variation present, but
to the study of the qualitative problems of the type, or
form, of the variation. Especially important is the
study of the simultaneous variation of two or more
variates. This study, arising principally out of the
work of Galion and Pearson, is generally known
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under the name of Correlation, or, more descriptively,
as Covariation. ' :
The third aspect under which we shall regard the
scope of statistics is introduced by the practical need
to reduce the bulk of any given body of data. Any
investigator who has carried out methodical and
extensive observations will probably be familiar With\\\
the oppressive necessity of reducing his results 1¢ha
more convenient bulk. No human mind is capa@e of
grasping in its entirety the meaning of any wconsider-
able quantity of numerical data. We want';}} be able
to express all the relevant informatioi{gontained in
the mass by means of comparativelyyfew numerical
values. This is a purely practic&l\ﬁeed which the
science of statistics is able to somiglextent to meet. In
some cases at any rate it s possible to give the whole
of the relevant information\by means of one or a few
values. In all cases, perhaps, it is possible to reduce
to a simple numerical form the main issues which the
investigator has in\'\?,iﬁew, in so far as the data are com-
petent to throw light on such issues. The number of
independent fagts supplied by the data is usually far
" greater than'the number of facts sought, and in conse-
quence.dtirch of the information supplied by any body
of aetual data is irrelevant, It is the object of the
_st@ﬁi}tical processes employed in the reduction of data
..\t'i;}:éxclude this irrelevant information, and to isolate the
NAwhole of the relevant information contained in the data.

2. General Method, Calculation of Statistics

The discrimination between the irrelevant informa-
tion and that which is relevant is performed as follows.
Even in the simplest cases the values (or sets of
values) before us are interpreted as a random sample
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of a hypothetical infinite population of such values as
might have arisen in the same circumstances. The
distribution of this population will be capable of some
kind of mathematical specification, involving a certain
number, usually few, of parameters, or ‘‘ constants ”’
entering into the mathematical formula. These para-
meters are the characters of the population. If we\
could know the exact values of the parameters,{(wé
should know all (and more than) any sample from
the population could tell us. We cannot in faet'know
the parameters exactly, but we can mak&)eéstimates
of their values, which will be more o¥ less inexact.
These estimates, which are termed statistics, are of
course calculated from the obseryafions. If we can
find a mathematical form fornthe population which
adequately represents the data, ‘and then calculate from
the data the best possibley estimates of the requlred
parameters, then it wouId seem that there is little,
or nothing, more that the data can tell us; we shall
have extracted from it all the ava1lab1e relevant
information. K&~
The valughof such estimates as we can make is
enormoushydncreased if we can calculate the magnitude
and nat(ye of the errors to which they are subject. If
we c%p rely upon the specification adopted, this pre-
seiits the purely mathematical problem of deducing
_dtom the nature of the population what will be the
\ Jhehaviour of each of the possible statistics which can
be calculated. This type of problem, with which until
recent years comparatively little progress had been
made, is the basis of the tests of significance by which
we can examine whether or not the data are in harmony
with any suggested hypothesis, In particular, it is
necessary to test the adequacy of the hypothetical
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specification of the population upon which the method
of reduction was based.

The problems which arise in the reduction of data
may thus conveniently be divided into three types :

(i Problems of Specification, which arise in the
choice of the mathematical form of the population. .

(i) When a specification has been obtainedy
problems of Estimation arise. These involve(the
choice among the metheds of caleulating,\Arom
our sample, statistics fit to estimate the \'\ﬁ’ﬁknown
parameters of the population. L&

(iii) Problems of Distribution include the mathe-
matical deduction of the exact pature of the dis-
tributions in random samples of &ur estimates of the
parameters, and of other statistics designed to test
the validity of our speciﬁcgbt‘ipﬁ {tests of Goodness of
Fit). ' .

The statistical examitnation of a body of data is
thus logically simildf to the general alternation of
inductive and dé{;ﬁctive methods throughout the
sciences. A hypothesis is conceived and defined with
all necessary,exactitude ; its logical consequences are
ascertained)by a deductive argument; these conse-
quences\are compared with the available observations ;
if these are completely in accord with the deductions,
t"lgefhypnthesis is justified at least until fresh and more

~sitingent observations are available. The author
has attempted a fuller examination of the logic of
planned experimentation in his book, The Design of
Experiments.

The deduction of inferences respecting samples,
from assumptions respecting the populations from
which they are drawn, shows us the position in
Statistics of the classical Theory of Probability. For
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a given population we may calculate the probability
with which any given sample will occur, and if we
can solve the purely mathematical problem presented,
we can calculate the probability of occurrence of any
given statistic calculated from such a sample. The
problems of distribution may in fact be regarded as .
applications and extensions of the theory of proba-\»
bility. Three of the distributions with which (&é
shall be concerned, Bernoulli’s binomial dlStrlbLil‘,I«OIl
Laplace’s normal distribution, and Poissorz{ Series,
were developed by writers on probability. For many
years, extending over a century and a ha# attempts
were made to extend the domain of the'idea of prob-
ability to the deduction of infci'&lces respecting
populations from assumptions\J(or observations)
respecting samples.  Such inferences are usually
distinguished under the hea.dmg of Inverse Probability,
and have at times galned ‘wide acceptance, This is
not the place to enter 1Qt0 the subtleties of a prolonged
controversy ; it WlI’L be sufficient in this general
outline of the scope of Statistical Science to reaffirm
my personal (Cenviction, which I have sustained
elsewhere, dlfat the theory of inverse probability is
founded Gpon an’error, and must be wholly rejected.
Infergnbes respecting populations, from which known
samp}es have been drawn, cannot by this method be
pressed in terms of probabﬂlty, except in the trivial

\case when the population is itself a sample of a super-
population the specification of which is known with
accuracy.

The probabilities established by those tests of
sigfiificance, which we shall later designate by # and 2,
are, however, entirely distinct from statements of
inverse probability, and are free from the objections
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which apply to these latter. Their interpretation as
probability statements respecting populations con-
stitute an application unknown to the classical writers
on probability. To distinguish such statements as to
the probability of causes from the earlier attempts
now discarded, they are known as statements. of
Fiducial Probability.

The rejection of the theory of inverse probability
was for a time wrongly taken to imply that we ca'gindﬁ
draw, from knowledge of a sample, inferenceg respect-
ing the corresponding population. Such a¥iew would
entirely deny validity to all experimental science.
What has now appeared is that th® mathematical
concept of probability is, in most ‘¢asés, inadequate to
express our mental confidence gi\"&ifﬁdence in making
such inferences, and that the, mathematical quantity
which appears to be apg;'(i[’jriate for measuring our
order of preference amgng different possible popula-
tions does not in fact obey the laws of probability.
To distinguish i from probability, 1 have used the
term ¢ Likelingod” to designate this quantity *; since
both the wopds  likelihood ”’ and “ probability ? are
loosely uge&m common speech to cover both kinds
of re%@pnship.

C\

\ 3 The Qualifications of Satisfactory Statistics
The solutions of problems of distribution {(which

N\ "may be regarded as purely deductive problems in the

theory of probability) not only enable us to make
critical tests of the significance of statistical results, and
of the adequacy of the hypothetical distributions upon

* A more special application of the likelihood is its use, under the
name of * power function,” for comparing the sensitiveness, in some
chosen respect, of different possible tests of significance.

N
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which our methods of numerical inference are based,
but afford real guidance in the choice of appropriate
statistics for purposes of estimation. Such statistics
may be divided into classes according to the behaviour
of their distributions in large samples.

If we calculate a statistic, such, for example, as the

mean, from a very large sample, we are accustomed to

ascribe to it great accuracy ; and indeed it will usually,,

but not always, be true, that if a number of suéh

statistics can be obtained and compared, the discrep-
ancies among them will grow less and less,(as) the
samples from which they are drawn are made larger
and larger. In fact, as the samples arpubdde larger
without limit, the statistic will usuallyvtend to some
fixed value characteristic of the pggufla‘tion, and, there-
fore, expressible in terms of the,parameters of the
population. If, therefore, suph?a'étatistic is to be used
to estimate these parameteds) there is only one para-
metric function to whichdt can properly be equated.
If it be equated to so e‘other parametric function, we
shall be using a statistic which even from an infinite
sample does ot ‘give the correct value; it tends
indeed to a( fixed value, but to a value which is
erroneous, \from the point of view with which it
was u$d Such statistics are termed Inconsistent
Statigfics ; except when the error is extremely minute,

asun ‘the use of Sheppard’s adjustments, inconsistent

“Statistics should be regarded as outside the pale of
decent usage.

Consistent statistics, on the other hand, all tend
more and more nearly to give the correct values, as
the sample is more and more increased ; at any rate,
if they tend to any fixed value it is not to an incorrect
one. In the simplest cases, with which we shall be
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concerned, they not only tend to give the correct
value, but the errors, for samples of a given size, tend
to be distributed in a well-known distribution (of which
more in Chap. 111) known as the Normal Law of
Frequency of Error, or more simply as the normal
distribution. The liability to error may, in such cases,
be expressed by calculating the mean value of thg\'“
squares of these errors, a value which is knowmn“as
the variance ; and in the class of cases with whitb We
are concerned, the variance falls off with indreasing
samples, In inverse propottion to the nufiber in the
sample. ,\

Now, for the purpose of estimating\any parameter,

such as the centre of a normal distgibiition, it is usually
possible to invent any number)df statistics such as the
arithmetic mean, or the me@ié:ﬂ, etc., which shall be
consistent in the sense défined above, and each of
which has in large samples a variance falling off
inversely with the size of the sample. But for large
samples of a ﬁ;ced:}ize the variance of these different
statistics willy, g’e}lerally be different. Consequently;
a special impdrtance belongs to a smaller group of
statistics,(thé error distributions of which tend to the
normakh distribution, as the sample is increased, with
the%ﬁét possible variance. We may thus separate
' foi}rom the general body of consistent statistics a
\‘} group of especial value, and these are known as
efficient statistics.

The reason for this term may be made apparent by
an example. If from a large sample of (say) rooco
observations we calculate an efficient statistic, A, and
4 second consistent statistic, B, having twice the
variance of A, then B will be a valid estimate of the
required parameter, but one definitely inferior to A
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in its accuracy. Using the statistic B, a sample of
2000 values would be required to obtain as good an
estimate as is obtained by using the statistic A from
a sample of 1000 values. We may say, in this sense,
that the statistic B makes use of 50 per cent. of the
relevant information available in the observations;

or, briefly, that its efficiency is 5o per cent. The term .

“ efficient ”’ in its absolute sense is reserved for.

statistics the efficiency of which is 100 per cent. & ")

Statistics having efficiency less than 100 per cent.
may be legitimately used for many purposexs\'\wlt is
conceivable, for example, that it might in somie cases be
less laborious to increase the number of abservations
than to apply a more elaborate method\ef calculation
to the results. It may often happen$hat an inefficient
statistic is accurate enough to dnswer the particular
questions at issue. There is,,h‘t’;ivever, one limitation
to the legitimate use of ghefficient statistics which
should be noted in advatce. YIf we are to make
accurate tests of gooddiess of fit, the methods of fitting
employed must nc;(mtroduce errors of fitting compar
able to the efrors of random sampling; when thi
requirement ‘ig’:investigated, it appears that when tests

of goodnesshof fit are required, the statistics employed
in fitting Must be not only consistent, but must be of
100 pércent. efficiency: This is a very serious limita-
tioftoto the use of inefficient statistics, since in the
“oxamination of any body of data it is desirable to be
able at any time to test the validity of one or more
of the provisional assumptions which have been made.

Numerous examples of the calculation of statistics
will be given in the following chapters, and, in these
illustrations of method, efficient statistics have been
chosen. The discovery of efficient statistics in new
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types of problem may require some mathematical
investigation. The researches of the author have led
him to the conclusion that an efficient statistic can
in all cases be found by the Method of Maximum
Likelihood ; that is, by choosing statistics so that the
estimated populatlon should be that for which the
likelihood is greatest. In view of the mathemanca{\
difficulty of some of the problems which arise it is also
useful to know that aﬁp?’oxzmaz‘w?zs to the maxdiniufn
likelihood solution are also in most cases~&fficient
statistics. Some simple examples of the &pplication
of ‘the method of maximum likelihood) and other
methods, to genetical problems are Qeveloped in the
final chapter. O
For practical purposes it is ndt generally necessary
to press refinement of methods fiirther than the stipula-
tion that the statistics used{should be efficient. With
large samples it may,s «be shown that all efficient
statistics tend to eguivalence, so that little incon-
venience arises from diversity of practice. There is,
however, one cléss of statistics, “including some of the
most frequently recurring examples, which is of
theoretical™\imterest for possessing the remarkable
property that, even in small samples, a statistic of this
cIass){lone includes the whole of the relevant informa-
tioph Which the observations contain. Such statistics
ma?e distinguished by the term sufficient and, in the
Nise of small samples, sufficient statistics, when they
exist, are definitely superior to other efficient statistics,
Examples of sufficient statistics are the arithmetic
mean of samples from the normal distribution, or
from the Poisson series; it is the fact of providing
sufficient statistics for these two important types of
distribution which gives to the arithmetic mean its



§4] INTRODUCTORY 15

theoretical importance. The method of maximum
likelihood leads to these sufficient statistics when
they exist,

While diversity of practice within the limits of
efficient statistics will not with large samples lead to
inconsistencies, it is, of course, of importance in all
cases to distinguish clearly the parameter of the {
population, of which 1t is desired to estimate the value
from the actual statistic employed as an estimate of[ts)
value; and to inform the reader by which, of“the
considerable variety of processes which exgsg\for the
purpose the estimate was actually obtam{;d}

“

4. Scope of this Book.\\

The prime object of this boek\is to put iato the
~.  hands of research workers, and éspécially of biologists,
~ the means of applying sta’cjs’g’ical tests accurately to

numerical data accumulate@¥in their own laboratories
or available in the literature. Such tests are the result
of solutions of problefhs of distribution, most of which
are but recent additions to our knowledge and have
previcusly onlg appea.red in specialised mathematical
papers. The ahathematical complexity of these prob-
lems has shade it seem undesirable to do more than
(i) to,indicate the kind of problem in question,
(i1} tg \we numerical illustrations by which the whole
prgcéss may be checked, (iii) to provide numerical

\’ta.b]es by . means of which the tests may be made
without the evaluation of complicated algebraical
eXpressions.

It would have been impossible to give methods
suitable for the great variety of kinds of tests which
are required but for the unforeseen circumstance that
each mathematical solution appears again and again
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in questions which at first sight appeared to be quite
distinct. For example, Helmert’s solution in 1875
of the distribution of the sum of the squares. of
deviations from a mean, is in reality equivalent to the
distribution of x? given by K. Pearson in 1900. [t
was again discovered independently by “ Student”
in 1908, for the distribution of the variance of a
normal sample. The same distribution was found, by
the author for the index of dlspersmn derived, ﬁom
small samples from a Poisson series. What, 15 “even
more remarkable is that, although Pearson\s paper
of 1900 contained a serious error, which, v‘ntlated most
of the tests of goodness of fit made by this method
until 1921, yet the correction of ‘ﬁ‘ns error, when
efficient methods of est1mat1on\are ‘used, leaves the
form of the distribution unchariged, and only requires
that some few units should-Be deducted from one of
the variables with which ~the Table of ¥* is entered.

It is equally fortunate that the distribution of Z
first established by & 'Student ™ in 1908, in his study
of the probable érkor of the mean, should be applicable,
not only to the case there treated, but to the more
complex, hmf even more frequently needed problem
of the comparlqon of two mean values. It further
provmkes an exact solution of the sampling errors of the
enorMously wide class of statistics known as regression

mcoefﬁaents

) In studying the exact theoretical distributions in
a number of other problems, such as those presented
by intraclass correlations, the goodness of fit of regres-
sion lines, the correlation ratio, and the multiple cor-
relation coefficient, the author has been led repeatedly
to a third distribution, which may be called the
distribution of 2, and which is intimately related to,
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and indeed a natural extension of, the distributions
introduced by Pearson and “ Student.” It has thus
been possible to classify the necessary distributions
covering a very great variety of cases, under these
three main groups; and, what is equally important,
to make some provision for the need for numerical
values by means of a few tables only. Tables needed.
for a wider range of problems, with illustrations of|
their use, have since been published separately. imf' "
The book has been arranged so that the studént
may make acquaxntance with these thrce\ main
distributions in a logical order, and procee}slmg from
more s1mple to more complex cas¢sn” Methods
developed in later chapters are freqlieéntly seen to
be generalisations of simpler \(netﬁods developed
previously. Studymg the work) methodlcally as a
connected treatise, the student will, 1t 1s hoped, not
miss the fundamental unity. of treatment under which
such very varied materlal has been brought together ;
and will prepare hlms@f to deal competently and with
exactitude with the‘\many analogous problems which
cannot be mdlwdually exemplified. On the other
hand, it is rec\ognlsed that many will wish to use the
book for laboratory reference, and not as a connected
course @fy'study. This use would seem desirable
only &N ifothe reader will be at the pains to work
th;angh, in all numerical detail, one or more of the
\'ﬁpj-pi‘opriate examples, so as to assure himself, not
Snly that his data are appropriate for a paraliel treat-
ment, but that he has obtained a critical grasp of the
meaning to be attached to the processes and results.
It is necessary to anticipate one criticism, namely,
that in an elementary book, without mathematical

proofs, and designed for readers without special
c
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mathematical training, so much has been included
which from the teacher’s point of view is advanced ;
and indeed much that has not previously appeared
in print. By way of apology the author would like to
put forward the following considerations.

{1) For non - mathematical readers, numerical
tables are in any case necessary; accurate tables
are no more difficult to use, though more laberious
to calculate, than inaccurate tables embodizing the
approximations formerly current. N

(2). The process of calculating ":?)robable or
standard error from one of the established formule
gives no real insight into the ra tom sampling dis-

tribution, and can only suppI( alvest of significance by

the aid of a table of deviatiens of the normal curve,
and on the assumption that the distribution is in fact
very nearly normal. Wheéther this procedure should,
or should not, be used must be decided, not by the
mathematical attaifiments of the Investigator, but by
discovering Wh@{h}f it will or will not give a sufficiently
accurate answer. The fact that such a process has
been used (successfully by eminent mathematicians
in analysing very extensive and important material
does £t imply that it is sufficiently accurate for
thelaboratory worker anxious to draw correct conclu-
sions from a small group of perhaps preliminary

~observations.

\‘:

(3) The exact distributions, with the use of which
this book is chiefly concerned, have been in fact
developed in response to the practical problems arising
in biological and agricultural research ; this is true not
only of the author’s own contribution to the subject,
but from the beginning of the critical examination of
statistical distributions in “ Student’s *’ paper of 1908,
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The greater part of the book is occupied by
numerical examples; and these have steadily
increased in number as fresh points needed illustration.
In choosing them it has appeared to the author a
hopeless task to attempt to exemplify the great variety
of subject-matter to which these processes may be

usefully applied. There are no examples from .
astronomical statistics, in which important work hass
heen done in recent vears, few from social studjes,”

and the biological applications are scatteredy -
systematically. The examples have rathex\ been
chosen each to exemplify a particular pya}::és's, and
seldom on account of the importancelof” the data
used, or even of similar examinations of analogous
data. By a study of the processes, exemplified, the
student should be able to ascertaimrto what questions,
in his own maiterial, such praggsses are able to give a
definite answer ; and, equally‘important, what further
observations would be nieeessary to settle other out-
standing questions. I conformity with the purpose
of the examples the reader should remember that they
do not pretend %0 be discussions of general scientific
questions, wHich would require the examination of
much more.extended data, and of other evidence, but
are solel§)€oncerned with the critical examination of
the pgbi\tlcular batch of data presented.

O R R
& 5. Historical Note

Since much interest has been evinced in the
historical origin of the statistical theory underlying
the methods of this book, and as some misappre-
hensions have occasionally gained publicity, ascribing
to the originality of the author methods well known

to some previous writers, or ascribing to his
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predecessors modern developments of which they
were quite unaware, it is hoped that the following
notes on the principal contributors to statistical
theory will be of value to students who wish to sce
the modern work in its historical setting.

Thomas Bayes’ celebrated essay published in
1763 is well known as containing the first attenipt
to use the theory of probability as an instpimént
of inductive reasoning; that is, for arguifig" from
the particular to the general, or from the’ sample
to the population. It was published Q‘(ﬁ\thumously,
and we do not know what views Ba{es would have

expressed had he lived to publishyon the subject.

We do know that the reason 46# his hesitation to
publish was his dissatisfachibn with the postulate
required for the celebrated  Bayes’ Theorem.” While
we must reject this postuldte, we should also recognise
Bayes' greatness in_spetceiving the problem to be
solved, in making an ingenious attempt at its solution,
and finally in’.r.\[ising more clearly than many
subsequent witers the underlying weakness of his
attempt. ()

Whereds' Bayes excelled in logical penetration,
Laplagér(1820) was unrivalled for his mastery of
ana&tfc technique. He admitted the principle of
inyerse probability, quite uncritically, into the

M:':j{dundations of his exposition. On the other hand,

\‘;

it 1s to him we owe the principle that the distribution
of a quantity compounded of independent parts shows
a whole series of features—the mean, variance, and
other cumulants (p. 73)-—which are simply the sums of
like features of the distributions of the parts. These
seem to have been later discovered independently by
Thiele (1889), but mathematically Laplace’s methods



§ 5] INTRODUCTORY 21

were more powerful than Thiele’s and far more
influential on the development of the subject in France
and England. A direct result of Laplace’s study
of the distribution of the resultant of numerous
independent causes was the recognition of the normal
law of error, a law more usually ascribed, with some
reason, to his great contemporary, Gauss.

Gauss, moreover, approached the problem of)
statistical estimation in an empirical spirit, raising the

question of the estimation not only of probablhtles
but of other quantitative parameters. He pérceived
the aptness for this purpose of the Méthod of
Maximum Likelihood, although he atempted. to
derive and justify this method from, t"}?e principle of
inverse probability. The method\has been attacked
on this ground, but it has no, feil connection with
inverse probability. Gaussg fmther, perfected the
systematic fitting of regresSwn formulee, simple and
multiple, by the method™of least squares, which, in
the cases to which it{s appropriate, is a particular
example of the method of maximum likelihood.

The first of\the distributions characteristic of
modern tests, 6F;Significance, though originating with
Helmert, Ns'rediscovered by K. Pearson in 1900,
for thewfigasure of discrepa.ncy hetween observation
and hyp\othesm known as ¥  This, I believe, is the
gredts “contribution to statistical methods by which
fhe“unsurpassed energy of Prof. Pearson’s work will
be remembered. It supplies an exact and objective
measure of the joint discrepancy from thelr expecta-
tions of a number of normally distributed, and mutually
correlated, variates. In its primary application to
frequencies, which are discontinuous variates, the
distribution is necessarily only an approximate one,
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but when small frequencies are excluded the approxi-
mation is satisfactory. The distribution is exact
for other problems solved later. With respect to
frequencies, the apparent goodness of fit is often
exaggerated by the inclusion of vacant or nearly
vacant classes which contribute little or nothing to
the observed x®, but increase its expectation, an$
by the neglect of the effect on this expectationso

adjusting the parameters of the population to fit. thnse
of the sample. The need for correction 01'1 this
score was for long ignored, and later dispubed but is
now, I believe, admitted. The chiefl ca*use of error
tending to lower the apparent goodiesy of fit is the
use of inefficient methods of ﬁturﬁg (Chapter IX).

This limitation could scarcely, have been foreseen in
1900, when the very rudlments of the theory of
estimation were unknown _

The study of the egigct sa,mpling distributions of
statistics commences i tgo8 with ““ Student’s ** paper
The Probable Evéor of a Mean. Once the true
nature of the préblem was indicated, a large number
of sampling jproblems were within reach of mathe-
matical solyfion. “ Student ” himself gave in this and

-a subsequeht paper the correct solutions for three
such\problems—the distribution of the estimate of the
variahce, that of the mean divided by its estimated
s{a.ndard deviation, and that of the estimated correla-

\tion coefficient between independent variates. These

sufficed to establish the position of the distributions
of ¥* and of # in the theory of samples, though
further work was needed to show how many other
problems of testing significance could be reduced
to these same two forms, and to the more inclusive
distribution of z. “ Student’s ' work was not quickly
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appreciated, and from the first edition it has been
one of the chief purposes of this book to make better
known the effect of his researches, and of mathe-
matical work consequent upon them, on the one
hand, in refining the traditional doctrine of the
theory of errors and mathematical statistics, and on
the other, in simplifying the arithmetical processes\{\
required in the interpretation of data. OV
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DIAGRAMS \\\
7. The preliminary examination of most rl.—.vtcr is
facilitated by the use of diagrams. Dmo‘ra.ms ‘prov
nothing, but bring outstanding features rea@ﬂy* to the
eye ; they are therefore no substitute fqrtsmch critical
tests as may be applied to the data, bupare valuable in
suggesting such tests, and in explamm@ the conclusions
founded upon them. OO
N\

3
N/

8. Time Diagrams, Growth Rate, and Relative
Gros’ﬁth Rate

The type of dla%ga\m in most frequent use consists
in plotting the values of a variable, such as the weight
of an animal or (}f a sample of plants against its age,
or the size of\d population at successive intervals of
time. Digsinction should be drawn between those
cases m arhich the same group of animals, as in a
feed1@*experlment 1s weighed at successive intervals
of ~L’1}ne, and the cases, more characteristic of plant

.\Physmlogy, in which the same individuals cannot be
Aised twice, but a parallel sample is taken at each
age. The same distinction occurs in counts of micro-
organisms between cases in which counts are made
from samples of the same culture, or from samples of
parallel cultures. 1If it is of importance to obtain the
general form of the growth curve, the second method
has the advantage that any deviation from the expected

2

+
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curve may be confirmed from independent evidence
at the next measurement, whereas using the same
material no such independent confirmation is obtain-
able. On the other hand, if interest centres on the
growth rate, there is an advantage in using the same
material, for only so are actual increases in weight
measurable. Both aspects of the difficulty can be got\<
over only by replicating the observations; by carrgs,
ing out measurements on a number of animals ufider’
parallel treatment it is possible to test, freln the
individual weights, though not from tht’;\\rrieans,
whether their grawth curve corresponds® with an
assigned theoretical course of developnient, or differs
significantly from it or from a series.d;&érently treated.
Equally, if a number of plants {fom each sample are
weighed individually, growt}}tt‘g.tes may be obtained
with known probable errorspand so may be used for
critical comparisons. Cay{gishould of course be taken
that each is strictly a zatttlom sample.

Fig. 1 represeqts;\the growth of a haby weighed
to the nearest oyfice at weekly intervals from birth.
Table 1 indicates the calculation from these data of
the absolupe\gfowth rate in ounces per day and the
relative growth rate per day. The absolute growth
rates,’\(éij%ésenting the average actual rates at which
sub,sta}xce is added during each period, are found by
subtracting from each value that previously recorded,

\“\éﬁ& dividing by the length of the period. The relative
growth rates measure the rate of increase not only per
unit of time, but also per unit* of weight already
attained ; using the mathematical fact, that

rdm_ 4 {log, m},
m dt  di

it is seen that the true average value of the relative
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growth rate for any period is obtained from the natural
logarithms of the successive weights, just as the actual
rates of Increase are from the weights themselves.

TABLE r
l Ace Weight G{{uv:th Natural ]éi];vtbl::lf
ge In in Increase. 2€ | Logof | Increase.
Weeks, : per Day ; Rate [, O\
Cunces. (Oz). Weipht. per cent, \\
| 5 per Da)rg‘ \ ¢
? e . N
i 5 P S 3 log oo 8 log m 5 IC‘{%\;"'
i o 110 0953 xn,\\“’
4 "57 ‘03,5,?'\*’ ‘51
1 114 1310 | N0
14 200 (II59 1-66
2 128 . : '2469/4\
19 2091 ¢ ~f\{~ ~1384 198
H \8"\
3 147 2253 :
16 z:29 o\ 1033 147
4 163 ' BN 4886
g 129y *0537 77
5 172 N\ 5423
14 | “woo 0783 11z
6 186 '\\ 6zoh
;3':\ 171 ‘obzy -8y
7 198 | ¢ \\" . 6831
p \IO 43 10493 70
8 2085 *7324
ONY 5 A 10237 "34
) {213 *7561
W 19 271 0855 122
ul <8416
o A 232
\\ 8 114 ‘0339 48
TP 240 -8755
MW 14 2°00 "0567 +81
AV 12 254 ‘9322
T oo ro272 ‘39 I
13 261 | "9594 .

Such relative rates of increase are conveniently
multiplied by 100, and thereby expressed as the
percentage rate of increase per day. If these
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percentage rates of incrcase had been calculated on
the principle of simple interest, by dividing the actual
increase by the weight at the beginning of the period,
somewhat higher values would have been obtained ;
the reason for this is that the actual weight of the baby
at any time during each period is usually somewhat
higher than its weight at the beginning. The er(Qr
introduced by the simple interest formula begBes
exceedingly great when the percentage u‘mrc,ases
between successive weighings are large.

Fig. 1 A shows the course of th¢] %aease in
absolute weight ; the average slope 0f~sit}ch a diagram
shows the absolute rate of increase,\\¥n this diagram
the points fall approximately on aﬁ}aight line, show-
ing that the absolute rate 0{)increase was nearly
constant at about 166 oz. Per diem. Fig. 1 B shows
the course of the increasglin the natural logarithm of
the weight ; the slopedt*any point shows the relative
rate of increase, whmh apart from the first week, falls
off perceptibly Wtﬁq increasing age. The features of
such curves akdhbest brought out if the scales of the
two axes arc)so chosen that the graph makes with
them apprommate]y equal angles; with nearly

- verticaldyor nearly horizontal lines, changes in the

e

510%?\‘3"6 not so readily perceived.
rapid and convenient way of displaying the line

, :':Df increase of the logarithm is afforded by the use of
graph paper in which the horizontal rulings are spaced

on a logarithmic scale, with the actual values indicated
in the margin (see Fig. 5). The horizontal scale can
then be adjusted to give the line an appropriate slope.
This method avoids the use of a logarithm table,
which, however, will still be required if the values of
the relative rate of increase are needed.
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In making a rough examination of the agreement
of the observations with any law of increase, it is
desirable so to manipulate the variables that the law
to be tested will be represented by a straight line.
Thus Fig. 1 A 1s suitable for a rough test of the law
that the absolute rate of increase is constant; if it
were suggested that the relative rate of increase were
constant, Fig. 1 B would show clearly that this was,
not so. With other hypothetical growth curves other
transformations may be used; for example,.in"the
so-called “* autocatalytic ” or “ logistic ” eutve the
relative growth rate falls off in pr0pogt\sn to the
actual weight attained at any time. NN, therefore,
the relative growth rate be plotted agénnst the actual
Welght the pomts should fall on\asstralght line if the

autocata.lytlc curve fits the" facts. For this
purpose it is convenient to p10t~ against each observed
weight the mean of the two adjacent relative growth
rates. To do this for_the above data for the growth
of an infant may be {&ff as an exercise to the student ;
twelve points will\be available for weights 114 to
254 ounces. he relative growth rates, even after
averaging a\djacent pairs, will be very irregular,
so that nelelear indications will be found from these
data, \ d{§4 straight line is found to fit the data, the
weight at which growth will cease, supposmg the
lawa'of growth continues unchanged, is found by

\'“Eiréducing t}ie;line to meet the axis.

X 9. Correlation Diagrams

Although most investigators make free use of
diagrams in which an uncontrolled variable is plotted
against the time, or against some controlled factor such
as concentration of solution, or temperature, much
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more use might be made of correlation diagrams in
which one uncontrolled factor is plotted against
another. When this is done as a dot diagram, a
number of dots are obtained, each representing a single
experiment, or pair of observations, and it is usually
clear from such a diagram whether or not any close
connexion exists between the variables. When_the
observations are few a dot diagram will often zeH yus
whether or not it is worth while to accumulate, Sbserva-
tions of the same sort; the range and e;et@nt of cur
experience is visible at a glance ; and assQela.mons may

" be revealed which are worth while following up.

If the observations are so nuperdus that the dots
cannot be clearly distinguished,J it's best to divide up
the diagram into squares, recordmg the frequency in
each ; this sem1-d1agramma:c1c record is a correlation
table. ~

Fig. 2 shows in a ot d;agra.rn the yields obtained
from an experimental plot of wheat (dunged plot,
Broadbalk fiel n»kothamsted) in years with different
total rainfall, “Ihe plot was under uniform treatment
during the, “whole period 1854-1888; the 35 pairs
of obse{vatlons indicated by 35 dots, show well the
assoeiation of high yield with low ra.mfa.l] Even
wk{ few observations are available a dot diagram
ity suggest associations hitherto unsuspected, or
Jwhat is equally important, the absence of associations
which would have been confidently predicted. Their
value les in giving a simple conspectus of the
experience hitherto gathered, and in bringing to the
mind suggestions which may be susceptible of more
exact statistical or experimental examination.

Instead of making a dot diagram the device is
sometimes adopted of arranging the values of one
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variate in order of magnitude, and plotting the values
of a second variate in the same order. If the line
so obtained shows any perceptible slope, or general
trend, the variates are taken to be associated. Fig. 3
represents the line obtained for rainfall, when the
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“\VFig. z2.—Wheat yield and rainfall for 35 years, 1854-1888.

.'\
) years are arranged in order of wheat yield. Such
\“}Ii'agrams are usually far less informative than the
dot diagram, and often conceal features of importance
brought out by the former. In addition, the dot
diagram possesses the advantage that it is easily used
as a correlation table if the number of dots is small,

and easily transformed into ane if the number of dots
is large,

-
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In the correlation table the values of both variates
are divided into classes, and the class intervals should
be equal for all values of the same variate. Thus
we might divide the value for the yield of wheat
throughout at intervals of one bushel per acre, and
the values of the rainfall at intervals of a 1 inch. The,
diagram is thus divided into squares, and the numbes)
45 AW

4ol

35

0r

251

201

SCALE OF BUSHELS PER ACRE AND INCHES PER ANNUM

15

Idé:gilRainfall and yield of 35 years arranged in order of yield.
O

of ‘observations falling into each square is counted and
“tecorded. The correlation table is useful for three
\’d1stmct purposes. It affords a valuable visual repre-
sentation of the whole of the observations, which with
a little experience is as easy to comprehend as a dot
diagram ; it serves as a compact record of extensive
data, which, as far as the two variates are concerned,
is complete. With more than two variates correlation
- tables may be given for every pair. This will not
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indeed enable the reader to reconstruct the original
data in its entirety, but it is a fortunate fact that for the
great majority of statistical purposes a set of such
“twofold distributions provides complete information.
Original data involving more than two variates are
most conveniently recorded for reference on cards,

each case being given a separate card with the several -
variates entered in corresponding positions upomn
' 4

them. The publication of such complete data presents ~

difficulties but it is not yet sufficiently realised \how
much of the essential information can be preseﬁted in
a compact form by means of correlation tables. The
third feature of value about the correldtion table is
that the data so presented form a conveirent basis for
the immediate application of ma{hwods of statistical
reduction. The most important(statistics which the
data provide, means, variance$) and covariance, can
be most readily calculated f20m the correlation table.
An example ofa correlation table is shown in Table 31,

p. 178, \\
Frequency Diagrams

When a la{ge number of individuals are measured

in respect,of physmal dimensions, weight, colour,
density, (&1¢., it is possible to describe with some
accuraly the population of which our experience may
be{egarded as a sample. By this means it may be
sossible to  distinguish it from other populations
\giﬂ'&ring in their genetic origin, or in environmental
circumstances. Thus local races may be very different
as populations, although individuals may overlap in
all characters ; or, under experimental conditions, the
aggregate may show environmental effects, on size,

death-rate, etc., which cannot be detected in the
D
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individual. A visible representation of a large number
of measurements of any one feature is afforded by a
frequency diagram. The feature measured is used
as abscissa, or measurement along the horizontal axis,
and as ordinates are set off vertically the freguencies,
correspondmg to each range.

Fig. 4 is a frequency diagram illustrating ‘the
distribution in stature of 1375 women [Pea.rson and
Lee’s data modified). The whole sample of wOmen is
divided up into successive height rangesgef ‘1 inch.
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E ,Qs,}" areas on the diagram represent equal fre-
qw&ncy ; if the data be such that the ranges into which

(the individuals are subdivided are not equal, care

should be taken to make the areas correspond to the
ohserved frequencies, so that the area standing upon
any interval of the base line shall represent the actual
frequency observed in that interval.

The class containing the greatest number of
observations is technically known as the modal class.

In Fig. 4 the modal class indicated is the class whose
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central value is 63 inches. When, as is very frequently
the case, the variate varies continuously, so that all
intermediate values are possible, the choice of the
grouping interval and limits 1s arbitrary and will
make a perceptible difference to the appearance of the
diagram. Usually, however, the possible limits of
grouping will be governed by the smallest units in. £
which the measurements are recorded. If, for
example, measurements of height were made to, tﬁe~
nearest quarter of an inch, so that all values between
66% inches and 67} were recorded as 67 mches, all
va.lues between 674 and 674 were recordeﬁ as 67%
then we have no choice but to take asour unit of
grouping I, 2, 3, 4, etc., quarters of an iMnch, and the
limits of each group must fall on sgme ‘odd number of
eighths of an inch. For purposes “of calculation the
smaller grouping units are mofe accurate, but for
diagrammatic purposes cegrser groupmg 1s often
preferable Fig. 4 mdlcates a umnit of grouping suitable
in relation to the tota]\m.nge for a la.rge sample ; with
smaller samples a, coarser grouping is usually necessary
in order that sufficient observations may fall in each
class. ‘\’ v
In all cdsgs where the variation is continuous the
frequencydiagram should be in the form of 2 histo-
gram, %ctangular areas standing on each grouping
inthv” showing the frequency of observations in that
interval. The alternative practice of indicating the
\frequency by a single ordinate raised from the centre
of the interval is sometimes preferred, as giving to the
diagram a form more closely resembling a continuous
curve. The advantage is illusory, for not only is
the form of the curve thus indicated somewhat mis-
leading, but the utmeost care should always be taken
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to distinguish the infinitely large hypothetical popu-
lation from which our sample of observations is
drawn, from the actual sample of observations which
we possess ; the conception of a continuous frequency
curve is applicable only to the former, and in illustrat-
ing the latter no attempt should be made to slur over
this distinction. 'K
This consideration should in no way prevent.'a
frequency curve fitted to the data from being-super-
imposed upon the histogram (as in Fig. 4);) the con-
trast between the histogram representing’the’ sample,
and the continuous curve representingan estimate of
the form of the hypothetical populat{on,‘is well brought
out in such diagrams, and the ey@)is aided in detect-
ing any serious discrepancy béfween the observations
and the hypothesis. No eyé observation of such
diagrams, however expetienced, is really capable of
discriminating whethef\or not the observations differ
from expectation by mbre than we should expect from
the circumstances\ of random sampling. Accurate
methods of rdking such tests will be developed in
later chaptets
With»discontinuous variation, when, for example,
the vagiate is confined to whole numbers, the reasons
given-for insisting on the histogram form have little
weight, for there are, strictly speaking, no ranges of
“wariation within each class. On the other hand, there
is no question of a frequency curve in such cases.
Representation of such data by means of a histogram
is usual and not inconvenient ; it is especially appro-
priate if we regard the discontinuous variation as
due to an underlying continuous variate, which
can, however, express itself only to the nearest whole
number. '
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16-1. Transformed Frequencies

It 15, of course, possible to treat the values of the
frequency like any other variable, by plotting the
value of its logarithm, or its actual value on loga-
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rithmic paper, when it is desired to illustrate the
agreement of the observations with any particular law
of frequency. Fig. 5 shows in this way the number of
flowers (buttercups) having 5§ to 10 petals (Pearson’s
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data), plotted upon logarithmic paper, to facilitate
comparison with the hypothesis that the frequency,
for petals above five, falls off in geometric progression.
Such illustrations are not, properly speaking, frequency
diagrams, although the frequency is one of the
variables employed, because they do not adhere to the
convention that equal frequencies are represented b\i
equal areas.

A useful form, similar to the above, is ;ased to
compare the death-rates, throughout life, of\different
populations. The logarithm of the num‘k}er of sur-
vivors at any age is plotted against the}age attained.
Since the death-rate is the rate ofldecrease of the
logarithm of the number of survi.v@}s“, equal gradients
on such curves represent eqi@l‘death-rates. They
therefore serve well to showwthe increase of death-
rate with increasing age, and to compare populations
with different death-rages. Such diagrams are less
sensitive to small'.ﬂﬁcmations tham would be the
corresponding frequency diagrams showing the dis-
tribution of thepopulation according to age at death ;
they are tHerefore appropriate when such smali
fAuctuatigns’are due principally to errors of random
samplmgc, which in the more sensitive type of dlagram

% bbscure the larger features of the comparison.
Iti\should always be remembered that the choice

;"‘Qf ‘the appropriate methods of statistical treatment

‘,l

1s quite independent of the choice of methods of
diagrammatic representation.

A need which is felt frequently in Genetics and
occasionally in other studies is to survey the evidence
on some particular frequency ratio provided by a
number of different samples, which may or may not
be homogeneous in this respect. The classification
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of samples, such as progenies of plants or animals,
according to the frequency-ratio they exhibit, and
the homogeneity of the samples classified alike, are
in such studies of critical importance, and the explicit
tests of Chapter IV will usually be needed. A
graphical survey of the evidence gives useful guldance
as to what particular points should be tested, and rs\\
of further value, as a means of presenting the evu:ience
most simply to the reader. O
The frequencies observed of the two alternatlves
in each sample may be used as co- ordlria\es of a
point, so that just so many points are> shown as
there are samples. In Fig. 5:1 the useful device has
been adopted of plotting not the abs‘slute frequencies,
but their square roots. Pomts\representmg samples
of 7 observations will then fallon a quadrant of a
circle of radius /7. SamplES showing a frequencv
ratio p:g¢, where p—{-g:—. 1, will fall on a radius
vector making an angle é Wlth the axis, such- that

sm?& #, cos’d = g.

The devige t\hus allows the diagram to exhibit
a wider range ‘of sample size, and a wider range of
frequencx satio, than would otherwise be possible.
ifiCe; moreover, the standard error of random
samﬁ}mg of ¢, for given #, is proportional to 1/+/7,
a,nd is independent of ¢, it follows that the scatter of
“Nthe observation points on either side of the radii to
which they approximate is nearly equal in all parts
of the diagram, and the eye is thus materially aided
in recognising homogeneous groups.
In the material for LZythrum salicaria illustrated
in Fig. 51, three classes represented by 1, 19 and 7
families respectively, appeared according to expecta-
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tion. The one family of 41 plants all mid-styled,
which evidently belongs to a fourth class, was un-
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expé}:ted; it may plausibly be ascribed to double
~Ffeduction having occurred in the meiosis producing
“vone of the germ cells from which the tested parent
plant originated.
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tx. The idea of an infinite population dlsmbut@&
in a frequency distribution 1n respect of one or mgre
characters is fundamental to all statistical¢“work.
From a limited experience, for example, of 1 dividuals
of a species, or of the weather of a locality, we may
obtain some idea of the infinite hypothstical popula-
tion from which our sample is drawn, and so of the
probable nature of future sampleQ\to which our con-
clusions are to be applied. Ifa ~second sample belies
this expectatmn we infer thay’ it is, in the language of
statistics, drawn from a diﬁZerent populatlon ; that the
treatment to which the second sample of organisms had
been exposed did ip<fact make a material difference,
or that the cllmaté\\(or the methods of measuring it)
had materiallyaltered. Critical tests of this kind
may be called’tests of significance, and when such
tests are gvailable we may discover whether a second
sample\\ls or is not significantly different from the
firsty \ N
(A statistic is a value calculated from an observed
\@ample with a view to characterising the population
from which it is drawn. For example, the mean of a
number of observations %;, %; . . . #%,, is given by
the equation

where S stands for summation over the whole sample
4F

.\\'\
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(this symbol is the one regularly used in our subject),
and # for the number of observations. Such statistics
are of course variable from sample to sample,” and
the idea of a frequency distribution is applied with
especial value to the variation of such statistics. {If
we know exactly how the original population was
distributed it is theoretically possible, though often &
matter of great mathematical difficulty, to calculgte
how any statistic derived from a sample of gives stze
will be distributed. The utility of any parficular
statistic, and the nature of its distribqﬁ‘oﬁ, both
depend on the original distribution, agd appropriate
and exact methods have been workedvout for only a
few cases. The application of thége cases is greatly
extended by the fact that the{distribution of many
statistics tends to the normal fotm as the size of the
sample is increased. Forithis reason it is customary
to apply to many cases.what is called *“ the theory of
large samples ~’ which 1s to assume that such statistics
are normally disgrib%}ted, and to limit consideration of
their variability %o calculations of the standard error.
In the présent chapter we shall give some account
of three principal distributions—(i) the normal distri-
bution,/{t) the Poisson series, (iii} the binomial
distsibdtion. It is important to have a general
knb\vledge of these three distributions, the mathe-
~(thatical formulee by which they are represented, the
’ experimental conditions upon which they occur, and
the statistical methods of recognising their occurrence.}
On the latter topic we shall be led to some extent to
anticipate methods developed more systematically in

Chapters IV and V.
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12. The Normal Distribution

A variate is said to_be normally distributed when
it takes all values from — oo t0 + oo, With frequencies

given by a definite 1 ma_thematlcal law; namely, that the
logarithm of the frequency at any distance & from
the centre of the distribution is less than the logarithm

of the frequency at the centre by a quantity propor-

tional to @2. The distribution is therefore szmmemgal,,‘

‘with the greatest fre_q_uency at the centre; althdugh

~
s
i

I'1c. 6.—Showing a way in which g.*s:)’g:fﬁnetrical frequency carve may depart
from the normal distribution. é , Hat-topped curve {y, negative) ; B, normal

curve (y; = o). \\

the variation is_uml u\hmlted the frequency falls off to
exceedmglz_smaﬂ va.lues at any considerable distance
from _the centre since a large negative logarithm
corres ds to a very small number. Fig. 6 B repre-
sents inormal curve of distribution. The frequency
in “\a.ny infinitesimal range dx may be written as

“~\.J 1 _y e

\,; df= Cf\/—z_qrg o dxs

where x—p is the distance of the observation, =z,
from the centre of the distribution, g ; and o, called
the standard deviation, measures in the same umnits
the extent to which the individual values are scattered.

N
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Geometrically ¢ is the distance, on either side of the
centre, of the points at which the slope is steepest,
or the points of inflexion of the curve (Fig. 4).

In practical applications we do not so often want to
know the frequency at any distance from the centre
as the total frequency beyond that distance; this is
represented by the area of the tail of the curve cut
off at any point. Tables of this total frequénsy,
or probability integral, have been constructéd) from
which, for any value of (x—p)fo, we can(hnd what
fraction of the total population has a lar &odeviation
or, in other, words, what is the probabjlity that a value
so distributed, chosen at random, shall exceed a given
deviation. Tables I and II_hav¥€ been constructed
to show the deviations corresponding to different
values of this probability.«\The rapidity with which
the probability falls offas the deviation increases is
well shown in thesefables, A deviation exceeding
the standard devidiion occurs about once in three
trials. Twicet ézéandard deviation is exceeded only
about once jn'Q trials, thrice the standard deviation
only once ,\iri~:37o trials, while Table 11 shows that to
exceed .fhe” standard deviation sixfold would nced
nearlgn&'thousand million trials. The value for which
P.ﬁ'\- ”5, or 11in 20,1is 1-g6or nearly 2; it is convenient

,.@B"ta.ke this point as a limit in judging whether a

«deviation is to be considered significant or not.

Deviations exceeding twice the standard deviation are
thus formally regarded as significant. Using this
criterion we should be led to follow up a false indication
only once in 22 trials, even if the statistics were the only
guide available. Small effects will still escape notice
if the data are insufficiently numerous to bring them
out, but no lowering of the standard of significance
would meet this difficulty.
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Some little confusion is sometimes introduced by
the fact that in some cases we wish to know the prob-
ability that the deviation, known to be positive, shall

ye%ceed an observed value, whereas in other cases the
-f" probability required is that a deviation, which 1s

~ --equally frequently positive and negative, shall exceed
an observed value; the latter probability is always °
half the former. For example, Table I shows that thé)

normal deviate falls outside the range +1-598193 in
11 per cent. of cases, and consequently that it Kceeds
+1-598193 in 5-5 per cents of cases.

The value of the deviation beyond whrch half the
observations lie is called the quartlle d15ta.nce and
bears to the standard deviation the ratio -67449.
It was formerly a common pract‘x;e to calculate the
standard error and then, multiplying it by this factor,
to obtain the probable err?g/?I' he probable error 1s
thus about two-thirds of he standard error, and as
a test of s1gn1ﬁcance 2 déviation of three times the
probable error is effectwely equivalent to one of twice
the standard errofcs The common use of the probable
error is its onlyyecommendation ; when any critical
test is requiréd the deviation must be expressed in
terms of the”standard error in using the tables of
norma \dewa.tes (Tables I and II).

Euriher tables of the normal distribution are given

ing Sz’azz‘zsa‘zm! Tables IX and X, and in Sheppard’s

\Z&ZZes 1938,

13. Fitting the Normal Distribution
From a sample of » individuals of a normal
population the mean and the standard deviation of
the population may be estimated by using two easily
calculated statistics. The best estimate of ¢ is # where

= ; S(x).
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while for the best estimate of &, we calculate s ﬁ{)m

5‘2 f—] _1- S(x——f)g ; = 2‘_?_“- - :I\\_

n—I -]
these two statistics are calculated from the sums
of the first two powers of the observations (see
Appendix, p. 70), and are specially related to the

normal distribution, in that they summarise the whole(®

of the information which the sample provides asato
the distribution from which it was drawn, provideé
the latter was normal. Fitting by sums of powers,
and especially by the particular system of\\stanstlcs
known as moments, has also been mdely\applled to
skew (asymmetrical) distributions, and others which
are not normal; but such d1str1b\sf10ns have not
generally the pecuhar properueS\whlch make the first
two powers especially a.pproﬁmate, and where the
distributions differ widely frém the normal form the
two statistics defined aboVe may be of little or no use.
Ex. 2. Fitting a, wormal distribution to a large
sample—In calcula.‘si}lg the statistics from a large
sample it is nok‘gecessary to calculate individually
the squares of, the deviations from the mean of
each measufjement The measurements are grouped
together ifi”equal intervals of the variate, and the
Whole\Qf the calculation may be carried out rapidly as
shown 'in Table 2, where the distribution of the stature
_ofir 164 men is anftlysed

. The first column shows the central height in
inches of each group, followed by the corresponding
frequency. A central group (68:-5") is chosen as
“working mean.” To form the next column the
frequencies are multiplied by 1, 2, 3, etc., according to
their distance from the working mean ; this process
being repeated to form the fourth column, which is
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TABLE =z.
| .
Central Ieight Men Frequency | Trequency
{Inches), (Frequency). Dev;;tion, (DeviztiOn)*. Women.
525 5
535 5
543 A
55°5 I \
56- 3 . "\s N 3
57°5 &3
585 - A3 CISTS
59'5 1 — 9 81 DN 52
6o s 25 — 20 160 (L 101
615 rs | — 105 13500 150
623 o5 | — §7 342 199
633 31 —155 N 223
64°5 6 | —22 | & 215
655 78'5 | —235°5 S 706'S 169°5
66" 5 127 —z254 ) 598 I5I' 5
675 178-5 —178-508° | 1785 813
685 189 —1L48% 40°5
69'5 137 | M7 137 19§
70°5 137 b, 274 548 10
785 93 {279 837 5
H2e g 52:8 ) 210 840
73'5 N 195 975 T
4°5 NI7 toz 612
75.5 Ve N/ 6.5 45.5 318.5
766 NY 35 28 224
775 ,,\3\“' I 9 81
78-5\1"; ’ 2 20 200
TOTEN _ X 11 121
Qv?;\ ; 1310'5
e ; 1164 167 8614 1 1456
N
ean +:1435 Estimated
Correction for mean 16721164 2396  Variance. S.D.
Corrected sum of squares 85gor04 73861 27177
Sampling variance of mean ‘006345 0797
Sampling variance of variance 00382 - 3¢63
Adjustment for grouping -0833
Adjusted variance 7 3028 2-7024
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summed from top to bottom in a single operation ;
in the third column, however, the upper portion,
representing negative deviations, is summed separately
and subtracted from the sum of the lower portion.
The difference, in this case positive, shows that the
whole sample of 1164 individuals has in all 167 inches
more than if every individual were 68-5” in heigl@.
This balance divided by 1164 gives the apidunt
by which the mean of the sample exceeds"‘;68“-5”.
The mean of the sample is therefore 6864355 3
From the sum of the fourth column is/gubtracted a
correction to give the value we shouldk :h\ave obtained
had the working mean been the true gtean. This correc-
tion is the product of the total,(@7”, and the mean
01435" derived from it. The¢brrected sum of squares
divided by 1163, one less than the sample number, pro-
vides the estimate of the watiance, 73861 square inches,
which is the basis of a.}lgs'ﬂbsequent calculations.
Corresponding 1o any estimate of a variance, we

" have, by taking.\'t}xe square root, the corresponding

estimate of the'standard deviation. Thus from the
value 7-386%)square inches, we obtain at once the
estimate /2177 inches for the standard deviation.
This,,l:ﬁc\;{fever, represents the standard deviation of
thepopulation as grouped. The process of grouping
ma,} be represented as the addition to any true value

(of a grouping error, positive or negative, which takes
' all values from —% to § of a grouping unit with equal

frequency. The effect of this on the population, and
its average effect upon samples, is to add a constant
quantity & (=-0833) to the variance.  Sheppard’s
adjustment for grouping consists in deducting this
quantity from the estimate of variance of the population
as grouped. This gives 7-3028 square inches for the
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adjusted variance, and 2-702 for the corresponding
estimate of the standard deviation.

Any interval may be used as a unit of grouping ;
and the whole calculation is carried through in such
units, the final results being transformed into other
units if required, just as we might wish to transform
the mean and standard deviation from inches to centi-

metres by multiplying by the appropriate factor. It

is advantageous that the units of grouping should be\.

exact multiples of the units of measurement ; so that
if the above sample had been measured to tenths(ofan
inch, we might usefully have grouped them ag{n?ervals
of 0:6” or 0-7".
Regarded as estimates of the mean a%ﬂthe standard
deviation of a normal population of which the above is
regarded as a sample, the values fg’)ﬁffiﬂ are affected by
errors of random sampling ; thgf:" is, we should not
expect a second sample to ’gi"\fé us exactly the same
values. The values for different (large) samples of
the same size would, Hewever, be distributed very
accurately in normg&l’}ﬂlstributions, so the accuracy
of any one suchiestimate may be satisfactorily
expressed by itsstandard error. These standard errors
may be calcgidted from the variance of the grouped
population{and in treating large samples we take our
estimateof this variance as the basis of the calculation.
'I}}i’;}formula for the variances of random sampling
ofjé\;)t’imates of the mean and of the variance of a
‘hormal population are (as given in Appendix, p. 70)
g? 20

n' on—1
Putting our value for £, 7-3861, in place of ¢* in
these formulee, we find that our estimate of the mean

has a sampling variance :006345 square inches, or,
E

~

N
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taking the square root, a standard error 0797 inches.
From this value it is seen that our sample shows
significant aberration (4 twice standard error) from
any population whose mean lay outside the limits
v68-48" to 68:80". It is therefore probable, in the
fiducial sense, that the mean of the population from
which our sample was drawn lay between these limits,
Similarly, our value for the variance of the popllation
1s seen to have a sampling variance 09482, or a
standard error -3063 ; we have therefore equally good
evidence that the variance of the groy gﬁ“ population
from which our sample was drawn' lay between
6773 and y-999 square inches. Jor the ungrouped
population we should deduct -983 from both Iimits.

It may be asked, Is nothing lost by grouping ?
Grouping in effect replacegt‘he actual data by fictitious
data placed arbitrarily @t the central values of the
groups; evidently a\ Very coarse grouping might
be very misleadings, Tt has been shown that as regards
obtaining estimabes of the parameters of a normal
population, théJ6ss of information caused by grouping
is less tham'y per cent., provided the group interval
does nopekeeed one-quarter of the standard deviation ;
the gy@ﬁping of the sample above in whole inches is
thug{é{}}newhat too coarse; the loss in the estimation .
of\the standard deviation is 2-28 per cent., or about

" “\27 observations out of 1164 ; the loss in the estimation

\ of the mean is half as great. With suitable group
intervals, however, little is lost by grouping, and
much labour is saved.

Anether way of regarding the loss of information
involved in grouping is to consider how near the
estimates obtained for the mean and the standard
deviation will be to the estimates obtained without
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grouping. From this point of view we may calculate

a standard error of grouping, not to be confused with

the standard error of random sampling which measures

the deviation of the sample values from the population

value. In grouping units, the standard error due to

grouping of both the mean and the standard deviation is
1

V1i2a <\

or in this case -0085”. For sufficiently fine grouplhg
this should not exceed one-tenth of the standard\error
of random sampling. ¢
In the analysis of a Iarge sample the estithdte of the
variance often employed is )
-~ S(x— 2
%

&

which differs from the formula given previously (p. 46)
in that we have divided by # ifistead of by (z~1). In
large samples the difference\between these formulee is
small, and that using #\may claim some theoretical
advantage if we wish, fﬁr an estimate to be used in con-
junction with the éstimate of the mean from the same
sample, as in fitting a frequency curve to the data ;
in general itigbest to use (#—1). In small samples
the differerige™is still small compared to the probable
error, bitBecomes important if a variance is estimated
by ave}agmg estimates from a number of small samples.
'Ilhﬁs if a series of experiments are carried out each
“with six parallels and we have reason to believe that
the variation is in all cases due to the operation of
analogous causes, we may take the average, a.f such
quantities as | S(r— gy == 1§ (r— 0
n—1 5

to obtain an unbiased estimate of the variance, whereas
we should underestimate it were we to divide by 6.
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14. Test of Departure from Normality

It is sometimes necessary to test whether an
observed sample does or does not depart significantly
from normality. For this purpose the third, and some-
times the fourth powers, are used ; from each of ¢ &6
it is possible to calculate a quantity, g, the avegage
.value of which is zero for a normal distributien, “and
which is distributed normally for large samiplés—the
standard error being calculable from theysize of the
sample. The quantity g, which is calgulated from the
third powers, is essentially a measute st asymmetry ;
the parameter y,, of which it prox.{i,c;l&\s"an estimate, may
be equated to 4+ /B, of Peagson’s notation, though
Pearson also used 8, to designate a statistic which is
not the equivalent of g% ; gfcalculated from the fourth
powers, is in like mannefia measure of departure from
normality, in this case'of a symmetrical type, by which
the apex and the w0 tails of the curve are increased
at the expense Q{l‘the intermediate portion, or when
negative, the top and tails are depleted and the
shoulders, fitled out, making a relatively flat-topped
curve. (See Fig. 6, p. 43.) _

Y3, Use of higher powers to test normality.—

Degpa tures from normal form, unless very strongly
‘.Qia'rked, can only be detected in large samples ; con-
"\ versely, they make little difference to statistical tests on
N\ other questions. We give an example (Table 3) of
the calculation for go values of the yearly rainfall at
Rothamsted ; the process of calculation s similar to
that of finding the mean and standard deviation, but

it is carried two stages further, in the summation of
the 3rd and 4th powers. The formule by which the
sums are reduced to the true mean and the statistics
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TesT oF NORMALITY OF YEARLY RAINFALL
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| Year’s rain in ¥

l inches, requency-
16 1 —I2 144 —1728 20436
37 ;
19 3 —27 243 —218% 19689:" \
20 2 —16 128 —1024 81ge
21 3 —21 147 —1029 7203
22 .. . A
23 3 —15 75 —375 N 1875
24 2 —8 32 —Z28\[" 512
25 12 —16 108 =324 o7z
26 4 —8 16 32 64
27 7 —7 7 N =1 7

- - e

28 AN

o 4 O
29 8 8 ,t.::z’ 8 8 8
30 9 B 36 72 144
371 6 _ou8 54 162 486
3z 7 \"28 112 448 1792
33 4 \ LY 20 100 500 2500
34 . KD 24 144 864 5184
35 Lv 28 196 1372 9604
36 N\ 3 24 19z 1536 12288
37 P, 3 27 243 2187 19683
8 O\
39\12\"' I 1 121 1331 14641
O

: \’\\ 9o 56 2106 1646 125574

B rrectio —34'84 | 39312 | —40907

N orrecflons +43,4 +4892'2

/ to —40°§

Mean l
5 go ... |2o71016 | —2241-8 | 12632070
V] 62 |2z 2715 | —25-76r | —162-487
Adjustment —a833 +:008

. B <65 |231882 | —25761 | —162°479

£ —231 —- 302
Standard +r 254 £ 503
error
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% and g are calculated, are gathered in an Appendix,
p. 70. For the £ statistics we obtain n terms of
group mntervals
oy =62, fg= 232715, Ay= —2376, &= —162-40,
whence are calculated _
g =HEP = —23r, gy — K = — 302,

~

For samples from a normal distribution the samplir}g
variances of gy and g are given exactly by the formufa
in the Appendix, and the numerical values “of the
standard error have been appended in Tazble 3. It
will be seen that neither are mgmﬁcém‘t or even
exceeds its standard error. A negaiiv€ value of yy,
which is suggested but not established by the data,
would indicate an asymmetry\of the distribution in
the sense that moderately dtp" and very wet years
are respectively less frequent than moderately wet
and very dry years. o3°

15. Dig€ontinuous Distributions

Frequently’a@é}iable 1s not able to take all possible
values, but i{eonfined to a particular series of values,
such as thewhole numbers. This is obvious when the
Varlable}s a frequency, obtained by counting, such as
the fdmber of cells on a square of a heemacytometer,

orthe number of colonies on a plate of culture medium.

'Fhe normal distribution is the most important of the

\ Jcontinuous distributions : but among discontinuous

distributions the Poisson series is of the first importance.

If a variate can take the values o, 1, 2, . . ., z, .

and the relative frequencies with which the values occur
are given by the series

2 ]

FH #Hi
e,y —, L, —, .

2! al
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(where x! stands for * factorial 7' = x(x—~1) (x—2)
1), then the number is distributed in the Poisson
series. The total frequency is unity, since
g™ = I—}'m—}—?;if»{—?;i:—i—
Whereas the normal curve has two unknown para-
meters, i and o, the Poisson series has only on_e:\\\
This value may be estimated from a series of obsery@as,
‘tions, by taking their mean, the mean being a statistic
as appropriate to the Poisson series as it is~to the
normal curve. It may be shown theoretically that
if the probability of an event is exceed’ir}gly small,
“but a sufficiently large number of independent cases
are taken to obtain a number of ocgfifrences, then this
“inmber will be distributed in the(Boisson series. For’
example, the chance of a man being killed by horse-
kick on any one day is ex¢eedingly small, but if an
army corps of men are gqiif)'o'éed to this risk for a year,
often one or more ofthem will be killed in this way.
The following data;CB\ortkeWitch’s data) were obtained
from the recordsef ten army corps for twenty years,
supplying 20d such observations.

&
\ TABLE 4
2 _
\§ 0} — . _—
N ’{\ Deaths. 13;:&1:,233_’ Expected.
O —
N/ o 109 i 10867
1 63 6629
2 22 20°22
3 3 g1 |
4 I i 63
5 | *08
6 i ‘oI
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The average, %, is 0-61, and taking this as an
estimate of #z the numbers calculated agree excellently
with those observed.

The importance of the Poisson series in biological
research was first brought out in connexion with the
accuracy of counting with a hemacytometer. It was
shown that when the technique of the counting procesi\\
was effectively perfect, the number of cells on 93(;}1
square should be theoretically distributed in a Boisson
series; it was further shown that this disttibution
was, in favourable circumstances, actua.ll\y\ realised

TABLE 5 N\
Number of Cells. | Frequency observed. [(Fépfjuency expected. |
e \\ N I
O
o N 371
I 20 1737
2 Jlag 4065
3 ”\\;‘gg 6341
4 | L 74° 19
D ':“:\\ 70 : 69'4%1
, 54 5471
P, & 37 5 36721
AN 18 2118
N\Y% o oz
:1\'~~fo 5 516
JOYY 2 2 19
AN 12 2 ; 86
‘,”\ 13 +al
NS 4 ‘10
@ 15 e 03
\/ 16 oI
i Total . . 400 400700

in practice. Thus the preceding table (“ Student’s ”
data) shows the distribution of yeast cells in the 400
squares into which one square millimetre was divided.
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The total number of cells counted is 1872, and the
mean number is therefore 4-68. The expected
frequencies calculated from this mean agree well
with those observed. The methods of testing the
agreement are explained in Chapter I'V.

When a number is the sum of several components,

each of which is independently distributed in a Poisson .
series, then the total number is also so distributed,

Thus the total count of 1872 cells may be regarded.ds

a sample of one individual from a series, for wl}j‘q}i"ﬂ‘}z
is not far from 1872. The variance of a Heisson
series, like its mean is equal to w2 ; and for, shch large
values of 7 the distribution of numbers 2pproximates
closely to the normal form ; we may therefore attach
to the number counted, 1872, the Standard error
+vV 1872 = 44326, to represent the standard error
of random sampling of such aletnt, The density of
cells in the original suspensioh is therefore estimated
with a standard error of 2 -'ji”per cent. If, for instance,
a parallel sample differéd by 7 per cent., the technique
of sampling would besuspect.

16. SmaltSamples of a Poisson Series

Exactly\til% same principles as govern the accuracy
of a hamfacytometer count would also govern a count
of bafterial or fungal colonies in estimating the
nusbérs of those organisms by the dilution method,
“INit could be assumed that the technique of dilution
afforded a perfectly random distribution of organisms,
and that these could develop on the plate without
mutual interference. Agreement of the observations
with the Poisson distribution thus affords in the dilution
method of counting a test of the suitability of the
technique and medium similar to the test afforded of
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the technique of hzmacytometer counts. The great
practical difference between these cases 1s that from
the hzemacytometer we can obtain a record of a large
number of squares with only a few organisms on each,
whereas in a bacterial count we may have only 5
parallel plates, bearing perhaps 200 colonies apiece.
From a single sample of 5 it would be mmpossible’d
demonstrate that the distribution followed the Péisgon
series ; however; when a large number of such(8amples
have been obtained under comparable conditions, it
is possible to utilise the fact that for all, Poisson series
the variance is numerically equal tothg mean.
For each set of parallel plates \wath Xy, X ooo. o, X
colonies respectively, after findiag the mean #, an
index of dispersion may be eﬁ‘k:ﬂlated by the formula
o SR
s."'s ¥ f
It has been shown that for true samples of a Poisson
series, x® calculatéd in this way will be distributed
in a known ma.géer Table 111 (p. 112) shows the
principal Va.lueé of x® for this distribution ; entering
the table Wlth n equal to one less than the number
of paraller plates. For small samples the permissible
rangey ‘oF variation of x? 1s wide ; thus for five plates
withvz=4, x? will be less than 1- 064 in 10 per cent. of
eases, while the highest 10 per cent. will exceed 7799 ;
Ja, sihgle sample of 5 thus gives us little information ;
but if we have go or 100 such samples, we are in
‘a position to verify with accuracy if the expected
distribution is obtained.
Ex. 4. 7est of agreement with Poisson series of
a number of small samples—From 100 counts of
‘bacteria in sugar refinery products the following values
were obtained (Table 6) ; there being 6 plates in each
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case, the values of x? were taken from the x? table
for » = 5. '

TABLE 6
£ Expected. Observed. Expected
43 per cent.
| »
| IR
! 26 *43 23 N o’x'
*554 \\ 4
yg 1 G +43 N }‘ o/
cheg N
3 II 1 2‘{{"\
1145 \ 0O
3 ¥ \\}15
1610 x \\;
o T L +3
2°343 \\\\‘j
10 e 43
3000 % .
20 W\t 2 86
4' 351 ‘:: N
20 "W 7 86
6-064 *&’.’S\ 4.
728 ¢V 3 3
9 s\\
6 p. | 1o 4 43
923 \W
L N 5 1 215
TRojo
e 3 3 I 29
,\\’“is.sgg
R T ° "43
.‘&‘i_x 15-086
\> - I 1T 43
Total 100G 100 4300 ‘;‘i\
[

Tt is evident that the observed series differs strongly
from expectation ; there is an enormous excess in the
first class, and in the high values over 15; the rela-
tively few values from 2 to 15 are not far from the
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expected proportions, as is shown in the last column by
taking 43 per cent. of the expected values. Itis possible
then that even in this case nearly half of the samples
were satisfactory, but about 1o per cent. were exces-
sively variable, and in about 45 per cent. of the cases
the variability was abnormally depressed.

It is often desirable to test if the variability KN

of the right magnitude when we have not accumuldted
a large number of counts, all with the same ‘nﬁfﬁber
of parallel plates, but where a certain g@iber of
counts are available with various numbersefparallels.
In this case we cannot indeed verifyhthe theorctical
distribution with any exactitude, butdn test whether
or not the general level of varjability conforms with
expectation. The sum of a ntimiber of independent
values of x? is itself distributéd' in the manncr shown
in the Table of x2, provi('ie;:&'We take for # the number
S(x), calculated by adding the several values of n
for the separate experiments. Thus for six sets of
4 plates each thegdtal value of 2 was found to be 13-85,
the corresponding’ value of # is 6 x 3 = 18, and the x*
table shows,that for » — 18 the value 1385 is exceeded
in between 70 and 8o per cent. of cases ; it is therefore
not aixzi;bﬁormal value to obtain. In another case the
follqw\i‘ng values were obtained : '

~O° TABLE 7
\ ’ Number of i Number of
Plates in Set, Sets. 5(x). Total ¥
4 8 ; 24_ 27.3-[
5 36 144 13396
9 i ) 873
Total 176 170700

~
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We have therefore to test if x* = 1701sanunreason-
ably small or great value for z = 176. The x* table
has not been calculated beyond #z = 30, but for higher
values we make use of the fact that the distribution of
y becomes nearly normal. A good approximation is
given by assuming that (v'2y* —Vv/2z—1) is normally .
distributed about zero with unit standard deviation.\>
If this quantity exceeds 2, or even 1-645 for ¢he
5 per cent. level, the value of x* significantly extgeds
expectation. In the example before us RS

S e T TR
2m—1 =381, Vean—1=189%

N
Difference :}— 29

The set of 45 counts thus shois’ variability between
parallel plates, very close tg."t:hat to be expected theo-
retically. The internalo‘gﬁ}dence thus suggests that
the technique was satisfactory.
A
17. Presence afd“Absence of Organisms in Samples

‘When thei&onditions of sampling justify the use of
the Poisseh series, the number of samples containing
o, I, 2.,~§.‘..” . organisms is, as we have seen, connected
by axtalculable relation with the mean number of
organisms in the sample. With motile organisms, or

~(a other cases which do not allow of discrete colony
'formation, the mean number of organisms in the
sample may be inferred from the proportion of fertile
cultures, provided a single organism is capable of
developing. If 2 is the mean number of organisms in
the sample, the proportion of samples containing none,
that is the proportion of sterile samples, is ¢~", from
which relation we can calculate, as in the following
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table, the mean number of organisms corresponding
to 1o per cent., 20 per cent., etc., fertile samples.

TABLE §
Pereentage of

fertile samples 10 20 30 40 Lo 60 70 80 g0
Mean number
of organisms +1054 -2231 -3567 5108 6932 '9163 1-2040 16094 2-3026

N

In connexion with the use of the table aboy€ if
is worth noting that for a given number of s&mples
tested the frequency ratio of fertile to sterile™s most
accurately determined ‘at 5o per cent. fergdle, but for
the minimum percentage error in the.gétimate of the
number of organisms, nearly 8o per cent. fertile or 1-6
organism per sample is most accur&te. At this point
the standard error of samphng whay be reduced to
10 per cent. by taking abouts5 samples, whereas at
50 per cent., to obtain the saihe accuracy, 208 samples
would be required. (See Design of Experiments,
Section 68.)

The Poisson 5@1-\9'; also enables us to calculate
what percentage Of the fertile cultures obtained have
been derivedfrom a single organism, for the percentage
of impure Qultures, 7.e. those derived from 2 or more
organisnié; can be calculated from the percentage of
cult &s”'i:vhich proved' to be fertile, If ¢~ are sterile,
meT% will be pure cultures, and the remainder impure.

H'ﬁie following table gives representative values of
the percentage of cultures which are fertile, and the
percentage of fertile cultures which are impure :

TABLE o
Mean number of organisms
in sample . . . | 2 3 4 - 6 -7
Percentage fertile .. 952 1813 25°02 32°G7 3935 45712 50°34

Percentage of fertile cul-
tures impure . . . 492 967 14725 1867 22:92 27-02 30°95
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If it is desired that the cultures should be pure with
high probability, a sufficiently low concentration must
beused torenderat least nine-tenthsof the samples sterile.

18. The Binomia! Disiribution

The binomial distribution is well known as the first
example of a theoretical distribution to be established ™\
It was found by Bernoulli, about the end of.thé
seventeenth century, that if the probability of an‘.e:\}eﬁt
occurring were # and the probability of it not Qgchfring
were g(= 1—p), then if a random sampleyaf 7 trial
were taken, the frequencies with which“the event
occurred o, I, 2, . . ., 7 times weteN\given by the
expansion of the binomial {\\,

(gF2" 00
This rule is a particulag i:g.sc of a more general
theorem dealing with case$'n which not only a simple
' alternative is considered, but in which the event may
happen in s ways with probabilities gy, 22, - - 2.5
then it can be sh?xx}m that the chance of a randoem
sample of » giifﬁ&\g'czl of the first kind, &, of the second,
. ., @, of thelast is
N
\J z ) P2 I 2

D7 adal ...

W}Q\}hls the general term in the multinomial expansion
m:"\?f‘ (prtpat - - - 2™
V Ex. 5. Binomial distribution given by dice records.
—In throwing a true die the chance of scoring more
than 4 is 1/3, and if 12 dice are thrown together the
qumber of dice scoring § or 6 should be distributed
with frequencies given by the terms in the expansion

of NEREY
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If, however, one or more of the dice were not true, but
if all retained the same bias throughout the experiment,
the frequencies should be given approximately by

(g+2)%,

where g is a fraction to be determined from the data.
The following frequencies were cbserved (Weldon’ s\
data) in an experiment of 26,306 throws.

"0
<N

N

TABLE 10 O
lNumber of| e Fxpected ! Measure of‘b?vergence -
Lo werved | Expected
Dice with I'requency. | True Dice. %MEd
5ord. 1c& Truc Bice. | Biased Dice. L
_' '{\\'; —_— —_
o i85 20275 1 187-\%&\ Y 1554 ‘030
T 13140 1216-50 | 1I4 3745 0G4
2 3265 © 334537| 3aIy24 1931 “Hi7o
3 5475 | 557561 | ¢adbq-70 1-815 ‘019
4. 114 6272 3648 6269 35 : 4008 3849
5 5104 5018: d%, 511465 - 16g 1231
6 30067 | 202420 304254 6-677 1G7
7 1331 | 1ei4sr| 1329773 | 4664 -o01
8 403, £\ 392 04 42376 s 300 1ory
g 108 NN &7 of-03 3670 838
10 RE 13-07 14 69.
ix R4 T-19 r 36 952 -222
12 ":1\:”;... o N 1
’st 26306 | 26306 02 ; 2630600 357491 8179
,f’;"? ; ; ' one=10 7=y
8) i | |
. . i

It is apparent that the observations are not
compatible with the assumption that the dice were
unbiased. With true dice we should expect more
cases than have been observed of o, 1, 2, 3, 4, and fewer

cases than have been observed of 5, 6, . .

., 11 dice

scoring more than four. The same conclusion is more; .
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clearly brought out in the fifth column, which shows
the values of the measure of divergence
x-z

i3

where # is the expected value and x the difference
between the expected and observed values. The
aggregate of these values is x* which measures the
deviation of the whole series from the expected series AN\
of frequencies, and the actual chance of x? exceeding‘L‘,
3549, the value for the hypothesis that the dice are
true, is -0001. (See Section 20.) N

The total number of times in which a d.iq’s‘:howed
5 or 6 was 106,602, out of 315,672 trials, swhereas the
number expected with true dice is 105,224 ; from the
former number, the value of 2 can 'tge ealculated, and
proves to be *337,698,6, and henq’e\ts}ie expectations of
the fourth column were obtaingd.” These values are

KNS

much more close to the obseryed series, and indeed fit
them satisfactorily, showidg that the conditions of the
experiment were reall)qjuch as to give a binomial series.
The variance of ¢he binomial series is pg7z. Thus
with true dice and }15,672 trials the expected number
of dice scoring more than 4 is 105,224 with variance
701493 and) Standard error 264:9; the observed
number jexXeeeds expectation by 1378, or §-20 times
its standard error ; this is the most sensitive test of
thebias, and it may be legitimately applied, since
£4e) such large samples the binomial distribution
losely approaches the normal. From the table of

the probability integral it appears that a normal

deviation only exceeds 5-2 times its standard error
once in 5 million times.

The reason why this last test gives so much higher
odds than the test for goodness of fit, is that the latter
F
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is testing for discrepancies of any kind, such, for
example, as copying errors would introduce. The
actual discrepancy is almost wholly due to a single
item, namely, the value of p, and when that point
15 tested separately its significance is more clearly
brought out.

Ex. 6. Comparison of sex ratio in human Samilies
with binomial distribution.—Biological data are rarély
so extensive as this experiment with dice ; Géisél’er’s
data on the sex ratio in German families will serve
as an example. It is well known thatymale births
are slightly more numerous than female births, so
that if a family of 8 is regarded as\a>andom sample
‘of 8 from the general popula,ti;&‘f; the number of
boys in such families should~be distributed in the
binomial o+ ?‘j's”.

where p 1s the prop@j:tibn of boys. If, however, -
families differ not only by chance, but by a tendency
on the part of some parents to produce males or
females, thenghe/distribution of the number of boys
should showhan excess of unequally divided families,
and a defigiency of equally or nearly equally divided
fa.milie,s{»"l"he data in Table 11 show that there is
evi%ﬁﬂy such an excess of very unequally divided
faghilies. : .
A% The observed series differs from expectation
\m; “markedly in two respects: oneis the excess of unequally
divided families; the other is the irregularity of the
central values, showing an apparent bias in favour of
even values. No biological reason is suggested for
the latter discrepancy, which therefore detracts from
the value of the data. The excess of the extreme
types of family may be treated in more detail by.
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comparing the observed with the expected variance.
The expected variance, 7pg, is 1'998,28, while that
calculated from the data is 2-067,45, showing an
excess of 06917, or 3-46 per cent. The sampling
variance of this estimate of variance is (p. 77)

2eg® | K O
N—r1 N ) A\

A

N 3

where N is the number of families, and x, and & ™
are the second and fourth cumulants of the theoretical

distribution, namely, O
Ky = HPG = 1-99828 . \\
kg = npg(1—6pg) = — 99656, \

The values given are calculated fl;ﬁl‘f} the value of p
as estimated from the frequency of\beys in the sample.
The standard error of the variag@e:"which as the values
show is nearly v/7/N, is f«)ﬁr:iiri'cl to be -o1141. The
excess of the observed vatiance over that appropriate
to a binomial distribu{s'ibn is thus over six times its

standard error. 8
N TABLE 11
iﬁ;zﬁmbcr of o
Number of Boys{!) Familics Expected, | Excess (=) .
“x{\" Observed. m
—a®" —
N\ 213 16522 | + 4978 | T4'998
(NS 1 1485 1401°69 | +- 8331 4952
\NW 2 5331 szo2 65 +128 35 3160
v/ 3 10649 11034°65 | —385:05 | 13478
4 14959 1462760 | -+331°40 7508 |
5 11929 1240987 —480-87 18:633
6 6678 658024 + 9776 1452
v 2002 1993 78 + 9822 4839
8 342 26430 | + 7770 | 22843
53680 53680 00 91+ 869
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One possible cause of the excessive vartation lies
in the occurrence of multiple births, for it is known
that children of the same birth tend to be of the same
sex. The multiple births are not separated in these
data, but an idea of the magnitude of this effect may
be obtained from other data for the German Empire.
These show about 12 twin births per thousand,\\bf
which § are of like sex and § of unlike, so thaf ne-
quarter of the twin births, 3 per thousand,z}ha.fz be
regarded as “identical ” or necessarily alike in sex.
Six children per thousand would theref& probably
belong to such ““ identical ” twin births;,x\the additional
effect of triplets, etc., being smalk’ Now with a
population of identical twins it i§/easy to see that the
theoretical variance is doubled ; consequently, to
raise the variance by 3-46, pér cent. we require that
3:46 per cent. of the children should be “‘ identical "
twins; this is more\than five times the general
average ; and, although it is probable that the pro-
portion of twin's\'i,§ igher in families of 8 than in the
general population, we cannot reasonably ascribe more

than a fraction of the excess variance to multiple births.
\Y; :

m'}.g"..Small Samples of the Binomial Series

~With small samples, such as ordinarily occur in

ekperimental work, agreement with the binomial

m:';\séries cannot be tested with much precision from a

' single sample. It is, however, possible to verify that

the variation is approximately what it should be,

by calculating an index of dispersion similar to that
used for the Poisson series.

Ex. 7. The accuracy of estimates of infestation.—

The proportion of barley ears infested with gout-

fly may be ascertained by examining 100 ears, and
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counting the infested specimens; if this is done
repeatedly, the numbers obtained, if the material is
homogeneous, should be distributed in the hinomial

(g+£)"",

where p is the proportion infested, and ¢ the propor-
tion free from infestation. The following are the data
from 10 such observations made on the same plot
(J. G. H. Frew’s data): A\

16, 18, 11, 18, 21, 10, 20, 18, 17, 2I. Mea.g&y-o.
ON ?

~N

Is the variability of these numbers aseribable to
random sampling ; Z.e. Is the materigl” apparently
homogeneous ? Such data differ fromithose to which
the Poisson series is appropriate, it that a fixed total
of 100 is in each case divided irfﬁg Ywo classes, infested
and not infested, so that intaking the variability of
the infested series we are equally testing the variability
of the series of numbersinot infested. The modified
form of x?, the index of dispersion, appropriate to the
binomial is ’~2\:"é(x~f)2 5=

X T npg zg

1

diﬁering.«fr‘o\ﬁl the form appropriate to the Poisson

series, i{fi) Containing the divisor ¢, or in this case, ‘83.

Thelyalue of x* 15 921, which, as the x?* table shows, is

avperfectly reasonable value for #» = 9, one less than
“\the number of values available.

Such a test of the single sample is, of course, far
from conclusive, since x* may vary within wide limits.
1f, however, a number of such small samples are
available, though drawn from plots of very different
infestation, we can test, as with the Poisson series, if
the general trend of variability accords with the
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binomial distribution. Thus from 20 such plots the
total x? is 19364, while S(#) is 180. Testing as before
{p. 61), we find _
/38728 = 19°68
V359 = 1895

Difference —+-73.
O
The difference being less than one, we conclude
that the variance shows no sign of departure fmm that
of the binomial distribution. The d1fferenc\ e-between
the method appropriate for this case, if/which the
samples are small (10}, but each valuej§ Eferwed from
a considerable number (100) of obse(va.tlons, and that
appropriate for the sex distributiddin families of 8,
where we had many families, gdch of only 8 observa-
tions, lies in the omission of t}fe'term

Ky == ﬂﬁg{l -—QM)

n calculatlng the sf\a.rraard error of the variance.
When # 1s 100 thxs\\term is very small compared to
2n02p%¢%, and in ga@?ral the x* method is highly accurate
if the number in all the observational categories is as
high as 100
\
APPE@DIX on Tecmxicar NoTaTioN aNDp [FormuLE

A\Sz‘atzstzcs derived from sums of powers.

\ ' If we have 7 observations of a variate x, it 1s easy
“to calculate for the sample the sums of the simpler
powers of the values observed; these we may write

§, = S5(2) $a = S(x?)
Sq = S(x”) $4 = S(xY)
and so on.
It 15 convenient anthmetlcally to calculate from
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these the sums of powers of deviations from the mean
defined by the equations
I

S, =8§,— §
2 2, "1

2

2
Sy = $3— > 5454 —u51°
3 Eamiel ) Mg

8, == 5y Frgsyt = Spsit— 55t
4 4 nsl ?32 2¥1 ?331

&
O
Many statistics in frequent use are derived fromithese
values. R\
4

(i) Moments about the arbitrary orig”i}, x = 0;
these are derived simply by dividing the gorresponding
sum by the number in the sample ; i@ general if p stand
for 1, 2, 3, 4, - . ., they are deﬁqé{(ﬁy the formula

\

Clearly #', is the arithmétic mean, usually written 2.
(i) In order t ~Eﬂ§tain values independent of the
arbitrary origirﬁ,\ﬂa’ﬁd more closely related to the
intrinsic char@oteristics of the population sampled,
values called’® moments about the mean " are widely
used, which are found by dividing the sums of powers
abour\\it}:ie mean by the sample number ; thus if
PR 3 4
O
\'"\“,: wy ==
"4
these are the moments which would have been obtained
if, as would usually be inconvenient arithmetically, the
arithmetic mean had been chosen as origin.
(iii) A more recent system which has been shown
to have great theoretical advantages is to replace the

Sas

RIl-
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mean and the moments about the mean by the single
series of £-statistics

I

b= sy

By=——,

A Gk S
b= ey | S e

W

It is easy to verify the following re’lé.tit’ms :
b7 N

2% ¢
e’
™\

m'y =k

E
I
=
| I
&
“n

' nﬁ(nJ_I} 1{ _F’) (n—3)st 30— 1)%,° l'
by which the mo%lent statistics, when they are wanted,
may be obtaqle‘d from the £-statistics.
(iv) Ipis’of historical interest to note that a series
of stat.{"}és termed half-invariants, were defined by
Thiele) which are related to the moment statistics 7’
a.ndj;z in exactly the same way as the cumulants (see
"B below) are related to the moments p’ and p of the
population. Thus if 4,, 4,, Z;, . . . stand for the half-
invariants, we have
= m'y ke = my hy = miy
hy = my— 350 fg = my— 10migm1,

and so on. Thiele used the same term ‘‘half-
invariants” also to designate the population parameters
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of which these statistics may be regarded as estimates,
just as the single term ‘ moments ”’ has been used in
both senses by Pearson and his followers, so that the
cummulants have been frequently referred to as half-
invariants or semi-invatiants of the population, and
even the 4-statistics have been mistakenly called semi-

invariants of the sample. The half-invariants as,

originally defined by Thiele are not now of importance,,

and are only mentioned here to clear up the confusién<)
£ )

of terminology. , RO

o)
B. Moments and cumulants of theoretical dz'{qiz)ttz'om.

Either of the systems of statistics \erived from
sums of powers may be regarded ,ds” estimates of
corresponding parameters of the;{l'aﬁiéal distributions,
to which they would usually tend\iT the sample were
increased indefinitely. Theses true, or population,
values are designated by Qﬁg’el& letters ; thus ', is an
estimate of p'y, the foprt}i‘moment of the population
about an arbitrary origin, 7, is an estimate of p,, the
fourth moment of {ﬁe population about its mean, and
%, is an estimate of «,, the fourth cumulant of the
population., ¢ Tﬁe relations between these population
values arg,simpler than those between z and £, thus

AR = g = %3 Hg == Ky
\ \ pig = xgt 3k hg = K51 1 OKgity

~

SN
<‘a;n& so on. The general rule for the formation of the
coefficients may be seen from the facts that three
s the number of ways of dividing four objects into
two sets of two each, while ten is the number of ways
of dividing five objects into sets of two and three
respectively.

In respect of the relationship between the estimates
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and the corresponding parameters, the only elementary
point to be noted is that whereas the mean value of
any ' from samples of # is equal to the corresponding
p' and the mean value of any £ equal to the corre-
sponding «, this property is not enjoyed by the series

of moments about the mean s, g, 2, . . ., for
—  n—1 : O
Wy == —— fig A \\
% N
7
) (n—2)
_. (—1) (—2 O
Wy = 3 H3 A\
32 N
7\

My = %3—1 J. (02— 3t Diua + 32 3)#22}

. . s\ s
a series of formule which suffieiently exhibits the
practical inconvenience of \W§ihy the moments about
the mean, and which is typical of the much heavier
algebra to which the uge of these statistics leads, in
comparison with the J Statistics.

The half-invariants, 4, of Thiele suffer from the
same drawbaclg;:\\for, though they may be regarded
as estimates\&f\“i:he cumulants «, their mean values
from the aggregate of finite samples are not equal to
the corfesponding values «. In fact,

:t\m'
O7 m=rt,
"\ 7
R\
A - #—1) (me—2
S DI
- I 2
‘&4 = ""?"z'g"" l(ﬂ _"‘6?3“‘}_6)?(4—6?3?(2 »

showing that the higher members of this series suffer
from the same degree of troublesome complexity as do
the moments about the mean.
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The table below gives the first four cumulants of
the three distributions considered in this chapter in
terms of the parameters of the distribution :

C. Sampling variance of statistics derived from samﬁ% of N.

Sampling variances are needed primatily for tests
of significance. The principal use so far developed for
sums of powers higher than the secomld is In testing
normality. The iwo simplest nieasures of departure
from normality are those depenv;l?a‘nt from the statistics
of the 3rd and 4th degree, défined as

gr = k3lk® ‘f':'*w &e = Fafks”.

Tt should be notedrthat these do not exactly corre-
spond to the statiit’i:cs vy, and y, defined in the first
three editions. yIhese Greek symbols are best used not
for statistics, eqffor the parameters of which g, and g,
are estima;@s} The sampling variances are shown below.

V4
PN |

'® )
\Ts:@é‘ of l General Form. Normal.
Q- A N N
2 xq 25" 2t
z N TN—1 | N-—1
6N(N—1) .
& T W= AN+
' 24N(N—1)2 '
£ ‘ N—3) (N—2) (N+3) W +5)

Symbol. l Normal. g Poisson. Binomial. |
: !
Mean . . €y * ‘ " i np :| s &\
Variance . . kg | e* i m ‘ npq I A\
Third cumulant . kg | O | m 1 —npg(p—) )
Fourth cumulant . Ky | o | m | npg{r— 6pg'); "
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D. Adjustments for grouping.

When the sums of powers are calculated from
grouped data, it is desirable for some purposes to
introduce an adjustment designed to annul the average
effect of the grouping process. These adjustments
were worked out for the moment notation by Sheppardi\
and affect the sums of even powers about the mean:
Using unit grouping interval, the adjusted Valuses of
the second and fourth. A-statistics, represented by £
and &', may be obtained from the formula *

\\
By = by—3 & _éﬂi_'_iz_d}

These adjustments should be ufiéd' for purposes of
estimation, but not usually for(t tests of 51gmﬁcance
“Thus £’ will be a better es‘slmate of the variance
than 4., but the sampling, Wlance, or standard error,
both of the mean andf of the variance, should be
calculated from the \t{nadjusted value, 4.

\
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IV

TESTS OF GOODNESS OF FIT, INDEPENDENGE,
AND HOMOGENEITY; WITH TABLE OF 4%

N
£ 3
N7

20, The x* Distribution

In the last chapter some use has been',m\'aﬁe of the
x* distribution as a means of testing the agreement
between observation and hypothesisyMin the present
chapter we shall deal more genera}lﬁv&ith the very wide
class of problems which maysbe\solved by means of
the same distribution. O '

The element commonlts these tests is the com-
parison of the numbers-attually observed to fall into
any number of classés*with the numbers which upon
some hypothesis.;ife\expected. If m is the number
expected, and @H—x the number observed, in any
class, we caleulate » _

el

the ‘summation extending over all the classes. This
formula gives the value of 2, and it is clear that the
m:“igntﬁre closely the observed numbers agree with those
\V ‘expected the smaller will ¥* be; in order to utilise the
table it is necessary to know also the value of # with
which the table is to be entered. The rule for finding

7 1s that 7 is equal to the number of degrees of freedom

in which the observed series may differ from the
hypothetical ; in other words, it is equal to the number

of classes the frequencies in which may be filled up
78 ’
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arbitrarily. Several examples will be given to illus-
trate this rute.

For any value of z, which must be a whole number,
the form of distribution of x? was established by Pearson
in 1900 ; it is therefore possible to calculate in what
proportion of cases any value of ¥* will be exceeded.
This proportion is represented by P, which is there-
fore the probability that x? shall exceed any specified, N
value. To every value of x* there thus correspondsia
certain value of P ; as x? is increased from o to infinisy,
P diminishes from 1 to o. Equally, to anyxx@jﬁe of
P in this range there corresponds a certain valie of x2.
Algebraically the relation between these swd-quantities :
is a complex one, so that it is necessaryto have a table
of corresponding values, if the x? tesis'to be available
for practical use. OY

An important table of this\sort was prepared by
Elderton, and is known as~EHerton’s Table of Good-
ness of Fit. Elderton gives the values of P to six
decimal places corresponding to each integral value
of x* from 1 to 39,¢and thence by tens to 70. In place
of 7, the quantity'st’ (= z+1) was used, since it was
then believedghat this could be equated to the number
of frequenq’y'c'lasses. Values of #” from 3 to 30 were
given,, these corresponding to values of 7 from 2 to
29. & ble for #' = 2, or # = 1, was subsequently
supplied by Yule. Owing to copyright restrictions

\"\ire’have not reprinted Elderton’s table, but have given

4 new table (Table [1I, p. 11 2) in a form which experi-
ence has shown to be more convenient, Instead of
giving the values of P corresponding to an arbitrary
ceries of values of x2, we have given the values of x?
corresponding to specially selected values of P. We
have thus been able in a compact form to cover those
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parts of the distributions which have hitherto not
been available, namely, the values of x* less than unity,
which frequently occur for small values of #, and the
values exceeding 30, which for larger values of »
become of importance.

It is of interest to note that the measure of disper-
sion, (), introduced by the German economist LezQs,
is, if accurately calculated, equwalent to x%/n Qf our
notation. In the many references in Enghsh o the
method of Lexis, it has not, I believe, beenaioted that
the discovery of the distribution of x* in 1%al1ty com-
pleted the method of Lexis. If it.wate desired to
use Lexis’ notation, our table coul\d, be transformed
into a table of Q merely by didding each entry
by 7. O

In preparing this table we have borne in mind that
in practice we do not wam 6 know the exact value of
P for any observed y2, But, in the first place whether
or not the observed.yalue is open to suspicion. If P
1s between -1 and\b there is certamly no reason to
suspect the hypts\thems tested. If it is below -02 it is
strongly indiated that the hypothesis fails to account
for the whale'of the facts. We shall not often be astray
if we dra,\ara. conventional line at -03, and consider that
hlgh*e\r Yalues of ¥? indicate a real discrepancy.

0 compare values of x2, or of P, by means of a

. ‘\probable error ” is merely to substitute an inexact

\ (normal) distribution for the exact distribution given
by the x* table. :

The term Goodness of Fit has caused some to fall
into the fallacy of believing that the higher the value
of P the more satisfactorily is the hypothesis verified.
Values over -999 have sometimes been reported which,
if the hypothesis were true, would only occur once
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in a thousand trials. Generally such cases are demon-
strably due to the use of inaccurate formule, but
occasionally small values of x* beyond the expected
range do occur, as in Ex. 4 with the colony numbers
obtained in the plating method of bacterial counting.
In these cases the hypothesis considered is as definitely
disproved as if P had been -oo1.

When a large number of values of x* are availables
for testing, it may be possible to reveal discrepancies

which are too small to show up ina single valuegy we
may then compare the observed distribution of %> with
that expected. This may be done immediately by
simply distributing the observed values Of x? among
the classes bounded by values given @)\'the x? table,
as in Ex. 4, p. 58. The expegted frequencies in
these classes are easily written dowat, and, if necessary,
the y? test may be used to test the agreement of the
observed with the expected{frequencies.

It is useful to rememberthat the sum of any number
of quantities, x2, is gistributed in the x* distribution,
with 7 equal to the'siim of the values of 7 correspond-
ing to the values\of x* used. Such a test is sensitive,
and will ofteddbring to light discrepancies which are
hidden or_ gppear obscurely in the separate values.

The\:taiﬁle we give has values of » up to 30;
beyqnd tffis point it will be found sufficient to assume
that /22 i distributed normally with unit standard

\dé{fiation about a mean +/2z—1. LThe values of P
obtained by applying this rule to the values of x® given
for # = 30, may be worked out as an exercise. The
errors are small for z = 30, and become progressively
smaller for higher values of 7.

Ex. 8. Comparison with expectation of Mendelian

class frequencies—1In a cross involving two Mendelian
G
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factors we expect by interbreeding the hybrid (F;)
generation to obtain four classes in the ratiog : 3: 3: 15
the hypothesis in this case is that the two factors
segregate independently, and that the four classes
of offspring are equally viable. Are the following
observations on Preimula (de Winton and Bateson) in

accordance with this hypothesis ? \\
TABLE 12 A
Flat Leaves. E Crimped Lga{s; 3

Normal | Primrose | Lee’s« N P}mrose fotal.
i Eye. |QueenFye.| Eve N\NJueen Live.
- ; N
Observed (m-4x) | 328 I 122 | L &7 33 560 !
Expected () . | 315 | 1055} 103 35 560 !
| %2fm . - | "537 1| 2752 \.) 7467 ‘114 l10°870 [
1 &l ¢

v
.

The expected values are calculated from the
observed total, so that the four classes must agree in
their sum, and if; three classes are filled in arbitrarily
the fourth is th\erefore determinate ; hence # = 3;
x* = 10:87,. the chance of exceeding which value is
between Ofand -02; if we take P = 05 as the limit
of signifigant dev1at10n, we shall say that in this case
the (%smatlons from expectation are clearly S1gn1ﬁcant

et us consider a second hypothesis in relation

“ tb the same data, differing from the first in that we
‘suppose that the plants with crimped leaves are to
some extent less viable than those with flat leaves.
Such a hypothesis could of course be tested by means
of additional data ; we are here concerned only with
the question whether or no it accords with the values
before us. The hypothesis tells us nothing of what
degree of relative viability to expect ; we therefore take
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the totals of flat and crimped leaves observed, and
divide each class in the ratio 3 : 1.

TABLE 13
Flat Leaves, Crimped Leaves, \
Neormal | Primrose Lee's Primrose

Eye. |QueenEye.

Eye. |Queen Eye.

Observed . 328 122 77 33 -

Expected . 13378 112°5 825 275 ™\

x¥m . . - 267 +Boz *367 1100 | 27536
I N

»

The value of # is now 2, since only two eftries can
be made arbitrarily ; the value of x*, hewever, is so
much reduced that P exceeds -2, and the departure
from expectation is no longer significant. The sig-
nificant part of the original disCr¢pancy lay in the
proportion of flat to crimped ledyres.

It was formerly believedithat, in entering the yx*
table, » was always to be-8quated to one less than the
number of frequency classes; this view led to many
discrepancies, and Ha$ since been disproved with the
establishment of i:l% rule stated above. On the old
view, any comphtation of the hypothesis such as that
which in .the instance above admitted differential
viabilityswas bound to give an apparent improvement
in the/apreement between observation and hypothesis.
When the change in # is allowed for, this blas dis-
“appears, and if the value of P, rightly calculated, is

\many fold increased, asin thisinstance, the increase may
safely be ascribed to an improvement in the hypothesis,
and not to a mere increase in the number of para-
meters which may be adjusted to suit the observations.

Ex. 9. Comparison with expectation of the Poisson
series and Binomial series—In Table 5, p. 56, we

3
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give the observed and expected frequencies in the case
of a Poisson series. In applying the x? test to such
a series it is desirable that the number expected should
in no group be less than s, since the calculated distribu-
tion of x* is not very closely realised for very small
classes. We therefore pool the numbers for o and 1
cells, and also those for 10 and more, and obtain {be
following comparison :

TABLE 14 C

~Y

. :'\
pand1 2z 3 4 5 b &‘ g 10 and Tatal

Observed | 20 43 53 86 o 354 .\3\7.‘ 18 10 g 400

Expected | 21-08  40-65 63-41 74-10 69-44 R7a (6 ‘36 +21 2118 1102 866 | 400

x%em ‘055 136 1+709 1880 -005 s'.QOC' 017 477 03 DI3 I4-385

. J

Using 10 frequencydasses we have 2 = 4-385; in
ascertaining the value, ‘of # we have to remember that
the expected frequenmes have been calculated, not
only from thedefal number of values observed (400),
but also from the observed mean ; there remain, there-
fore, 8 degrees of freedom, and # = 8. For this value
the x%4able shows that P is between -8 and -9, showing
a clgsg; but not an unreasonably close, agreement with

expectation.
~\" Similarly, in Table 10, p. 64, we have given the
\' ‘value of x2 based upon 11 classes for the two hypo-
theses of “true dice” and “ biased dice”: with
“true dice ” the expected values are calculated from
the total number of observations alone, and 2 = 10, but
in allowing for bias we have brought also the means
into agreement so that # is reduced to 9. In the first

case x* is far outside the range of the table showing a
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highly significant departure from expectation ; in the
second it appears that P lies between -5 and -7, so that
the value of ¥? is within the expected range.

21. Tests of Independence, Contingency Tables

A special and important class of cases where the
agreement between expectation and observation may .
be tested comprises the tests of independence. If the \
same group of individuals is classified in two_{0r)
more) different ways, as persons may be classified’as
inoculated and not inoculated, and also as ,Q'ét'é.cked
and not attacked by a disease, then we may'\}Equire to
know if the two classifications are independent.

In the simplest case, when each classification
comprises only two classes, we have'a 2 x 2 table, or,
as it is often called, a fourfold takle.

Ex. 10. The following tgbl,e"is taken from Green-

wood and Yule’s data for Fyphoid :

_TABLE 13
o e
‘ ¢ '#,.ﬁttackcd. ‘ Not Attacked. ‘ Total.
i Inoculated”:.:.. . 56 ‘ 6,759 |1 6,815
N 1
\ Not. ix)o\é;ulated . 272 ‘ 11,356 |] 11,668
\ ,\\§ Total . 328 ‘ 18,155 \ 18,483
“_,;__ [ S I . e
AN TABLE 16
\W FXPECTED
) ; I ——— b - i —— 4 ———
4 I Attacked. i Not Atiacked. ‘ Total
! Inoculated . 120°94 \ 6,694 06 l| 6,815
‘ Not Inoculated . 207 06 ‘ 11,460°G4 |] 11,668
| 185 |
]

\ Total ‘ 328

18,483
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In testing independence we must compare the
observed values with values calculated so that the four
frequencies are im proportion ; since we wish to test
independence only, and not any hypothesis as to the
total numbers attacked, or inoculated, the *“ expected
values are calculated from the marginal totals observed,
so that the numbers expected agree with the numbers
observed in the margins; only one value nézéd;:be

calculated, ¢.g. O
328 X6815
18483

ot
T |

= 12094 ; \\ ;
’ :\‘

the others are written down at onde\by subtraction
from the margins. It is thus obvmué{hat the observed
values can differ from those expected 1n only 1 degree
of freedom, so that in testmg ,mdependence in a four-
fold table, #» = 1. Since 3= 56-234 the observations
are clearly opposed to th& hypothesm of mdependence
Without calculating, the' expected values, x* may, for
fourfold tables, beddirectly calculated by the formula

S8 (ad—beatbto+d)
KT @y e+ ate Gray

where q,\ﬁ,’\é, and & are the four observed numbers.
hen only one of the classifications is of two
clag , the calculation of x? may be simplified to some
extent, if it is not desired to calculate the expected
\'s numbers. If 4, &’ represent any pair of observed
frequencies, and 7, »’ the corresponding totals, we
may, following Pearson, calculate from each pair

; f__ r a

ita {an'—a'n)?,

-and the sum of these quantities divided by sz’ will
be x2.
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An alternative formula, which besides being
quicker, has the advantage of agreeing more closely
with the general method used in the Analysis of
Variance, has been developed by Brandtand Snedecor.
From each pair of frequencies the fraction, -

p = afata"),
is calculated, and from the totals
p=nfnt+n); e
then . ) O
2=-:—_. 5 '—'_-', ’s,.‘. .
X p?{ (ap) "2 \

O
where g = 1— 4. It is a further adva@ntafgé’\of this
method of calculation that it shows the d¢wal fractions
observed in each class; where there/is any great
difference between the two rows it\;\i‘s\ils{ilally convenient
to use the smaller series of fractions.

Ex. 11. 7est of z'ndepe?zq.’qzi‘ae'z'n a 2 Xn' classifica-
tiom.—From the pigmen{i«gﬁén survey of Scottish
children (Tocher’s data)the following are the numbers
of boys and girls froQ\fhe same district (No. 1) whose
hair colour falls j‘n{{):,ea.ch of five classes :

O\ TABLE 17
Hair COLOUR

%7 | Fair. Red. Medium. Dark. Jet Black| Total.

! B’&}'{s’i\ ) . 502 11g 840 3504 36 | 2100
| {;ﬁ‘:‘kﬁ .ol sa4 97 61 45T 14 | 1783 :
], Total .| 1136 216 1526 955 g0 | 3883 |
‘ Sex Ratio | '52113 55093 55036 -52775 -72000 -54082.
i

The sex ratio, proportion of boys, is given under
the total for each hair colour ; multiplying each by the
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number of boys, and deducting the corresponding
product for the total, there remains 2603, which on
dividing by 47 gives y? = 10°48.

In this table 4 values could be filled in arbitrarily
without conflicting with the marginal totals, so that

= 4. The value of P is between -02 and -03, so that
sex difference in the classification by hair colours. 1{‘
probably significant 4s judged by this district alone
It 1s to be noticed that, with this method, the. fatibs
must be calculated with somewhat h1gh Qremmon
Using five decimal places, the value of x2 {ven is not
quite correct in the second decimal,ahd to avoid
doubts as to the precision of calculaion two more
places would have been desirable, /lt'is evident from
' the ratios that the principal, dlscrepancy is due to
the excess of boys in the “ Jet‘BIack " class.

Ex. 12, 7est of mdepgn@’mce e 4X4 classzﬁm-
tion.—As an example ofca nore complex contingency
table we may take the results of a series of back-
crosses in mice, iAvolving the two factors Black-
Brown, Self-Pighald (Wachter’s data) :

) TABLE 18
y '\llim EBle_lck Self, Black Piehald, l Rrown Sc]f.. Brown Picbald. | Tatal, .
Coup
Ey 88 (8537}t 82 (75-24)| 75 (7093) | 60 (73°946)| 308
FL Females 38 (3443)1 34 (30°34)| 30 (2860 21 (29°63}| 123
REpulsmn—
b F; Males . | 115 (11700} | 93 (103-11) | 8o (p7-21) | 130 (10068} | 418
F; Females | of (1oo-20)} 88 (88-31) | o5 (B3-26) 7o (BG-23) | 358
Total 337 2g7 280 290 1204

The back-crosses were made in four ways, accord-
ing as the male or female parents were heterozygous
(F,) in the two factors; and according to whether the
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two dominant genes were received both from one
(Coupling) or one from each parent (Repulsion).

The simple Mendelian ratios may be disturbed by
differential viability, by linkage, or by linked lethals,
Linkage 1s not suspected in these data, and if the
only disturbance were due to differential viability of the §
four genotypes, these should always appear in the
same proportion ; to test if the data show 51gn1ﬁcant
departures we may apply the x* test to thewhole
4 x4 table. The values expected on the h‘ﬁ)othes;s
that the proportions are mdependent of thte matings
used, or that the four series are honjegeneous, are
given above in brackets. The cofittibutions to y
made by each cell are given below ﬁ‘able 19).

TABLE‘}‘Q‘.‘"
'I ‘081 -boy &234 2466 3388
[ 370 442 “Woby 2514 | 3395
‘034 ‘901N 3 047 8539 12:611
[ ~176 -oo*r\ 1655 606 2438
|| £
J

\ ;
661 Az 541 5005 14 12§ 21-832 |

The v&kLue of x“ 1S therefore 21 832 the value of
% is 9, for’ we could fill up a block of three rows and
three\'bolumns and still adjust the remaining entries to
cl(eck with the margins. In general for a contingency
\ “wable of » rows and ¢ columns » = (»—1) (¢—1). For
= g, the value of x* shows that P is less than ‘o1, and
therefore the departures from proportionality are not
fortuitous ; it is apparent that the discrepancy is due
to the exceptional number of Brown Piebalds in the F,
males Repulsion series.
It should be noted that the methods employed in
this chapter are not designed to measure the degree of
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association between one classification and another, but
solely to test whether the observed departures from
independence are or are not of a magnitude ascribable
to chance. The same degree of association may be
significant for a large sample but insignificant for a
small one ; if it is insignificant we have no reason on
the data present to suspect any degree of association ab
all, and it is useless to attempt to measure it. I, Jon
the other hand, it is significant the value of £%indi-
cates the fact, but does not measure the degree of
association. Provided the deviation is ezﬁ\'ly 51gn1ﬁ-
cant, it is of no practlcal importance whether Pis-or1
or 000,001, and it is for this reasomthat we have not
tabulated the value of x2 beyond ‘01. To measure
the degree of association it is r?écessary to have some
hypothesis as to the naturg -6f the departure from
mdependence to be mea@ured With Mendelian fre-
quencies, for example, the recombination percentage
may be used to medsure the degree of association of
two factors, and theélgmﬁcance of evidence for linkage
may be tested by\comparmg the difference between the
recombinatiehpercentage and 50 per cent. (the value
for unlin @a ‘factors), with its standard error. Such a
comparison, if accurately carried out, must agree
absglutely with the conclusion drawn from the ¥*
testo To take a second example, the values in a four-
~ fold table may be sometimes regarded as due to the
‘partition of a normally correlated pair of variates,
according as the values are above or below arbitrarily
chosen dividing-lines ; as if a group of stature measure-
ments of fathers and sons were divided between those
above and those below 68 inches. In this case
the departure from independence may be. properly
measured by the correlation in stature between father
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and son; this quantity can be estimated from the
observed frequencies, and a comparison between the
value obtained and its standard error, if accurately
carried out, will agree with the x? test as to the signifi-
cance of the association ; the significance will become
more and more pronounced as the sample is increased
in size, but the correlation obtained will tend to a'\<
fixed value. The x? test does not atiempt to measyre),
the degree of association, but as a test of sxgmﬁc;mce
it is independent of all additional hypotheses as. 1o ‘the
nature of the association. K7,

Tests of homogeneity are ma.thematlcali} 1dentical
with tests of mdependence, the last grample may
equally be regarded in either light; \m Chapter 113
the tests of agreement with the, Binomzal series were
essentially tests of homogenelty ; the ten samples
of 100 ears of barley (Ex‘ %7, p. 68) might have
been represented as a 2 x40 table, The x“ index of
dispersion would then bé: equlvalent to the x? obtained
from the contingendy table. The method of this
chapter is more gq}eral and is applicable to cases in
which the successive samples are notall of the same size.

Ex. 13, Homoge?zezz‘y of different families in
respect of Kazzo black ; ved—The following data show
in 33 fatiilies of Gammarwus (Huxley's data) the
numb\é}s with black and red eyes respectively :

\ TABLE z0

]$§ck 70 120 24 1t7 62 79 66 45 BI 64 208 154 31 138 21 o5 28
Red 14 31 6 29 17y 20 12 It 14 '3 52 45 4 45 4 28 7

Total 93 158 30 146 79 99 78 s6 75 77 260 159 3§ 203 2§ 133 3§

I
i
Black 58 81 25 95 47 67 3¢ 70 130 179 120 44 24 19 45 of \2565 I
Red 19 27 & =29 16 21 11 28 57 62 44 17 9 8 23 415772

Tatal 77 to8 33 724 63 B8 41 98 196 241 173 61 33 27 63 132 !3337
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The totals 2565 black and 772 red are distinctly
not in the ratio 3:1; the discrepancy 1s ascribed to
linkage. The question before us is whether or not all
the families indicate the same ratio between black and
red, or whether the discrepancy is due to a few families
only. For the whole table y* = 35:620,# = 32. This
is beyond the range of the table, so we apply. die
method explained on p. 81: A .\

Vax®=844; O
Van—1=794; ~NY
Difference = -+ -50 4= g\

The series is therefore not s{g‘niﬁcantly hetero-
geneous ; effectively all the families agree and confirm
each other in indicating the;ma:ck-red ratio observed
in the total. N

Exactly the same pracedure would be adopted if
the black and red nuthbers represented two samples
distributed accordifiy to some character or characters
each into 33 clag€es: The question “ Are these samples
of the same, population ? ” is in effect identical with
the questipn** Is the proportion of black to red the
same jn(edach family ? 7 To recognise this identity
is impeftant, since it has been very widely disregarded.
21-01. Yates’ Correction for Continuity

The distribution of x2, tabulated as in Table 111,
is a continuous distribution. The distribution of
frequencies must, however, always be discontinuous.
Consequently, the use of x* in the comparison of
observed with expected frequencies can only be of
approximate accuracy, the continuous distribution
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being in fact the limit towards which the true dis-
continuous distribution tends as the sample is made
ever larger. It was in order to avoid the irregularities
produced by small numbers that we have stipulated
above that in no group shall the expected number be
less than five. This safeguard generally ensures that
the number of possible sets of observations shall be ("
large, each occurrmg with only a small frequency,
so giving to x* a distribution closely mmula.tmga e
continuous distribution of the table. .

A case of special interest arises, howe,uér Swhen
there is only 1 degree of freedom, and\ Ywhen the
value of x? can, consequently, be calchlated from the
number observed in a single classoMf the number
in this class is small, ¢.g. 3, th‘e ‘probability of this
number may be by no meang fegligible compared
with the sum of the probabllmes of the more extreme
deviations represented by.“,., , OT 0 Qccurrences in
the class. If we want 0 ‘know whether the observed
number, 3, is so small as to indicate a significant
departure from . éxpectation, we require to know
whether the sum\)f the probabilities of 3, 2, 1 or o
together is Iess than a standard value, such as -05;
or, in othéh words, whether the total probability of
obtaining”our observed deviation, or any deviation
morg~vextreme, is so small that we should be
unwﬁhng to ascribe the deviation observed to mere

'\chance

Our actual problem, therefore, when stated exactly,
concerns a limited number of finite probabilities, which
in simple cases it may be convenient to calculate
directly. The Table of x?, on the other hand, gives
the area of the tail of a continuous curve, Inas-
much, however, as this curve supplies a close
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approximation to the actual distribution, the area
between the values of x?* corresponding to observed
frequencies of 34 and 24 will be a good approximation
to the actual probability of observing 3 ; and the area
of the tail beyond the value of x? corresponding to
3% will be a good approximation to the sum of the
probabilities of observing 3 or less. Thus our acsual
problem will best be resolved by entering thig)fable
of x*, not with the value calculated from ¢he actual
frequencies, but with the value it would~have if our
observed frequencies had been less extfémie than they
really are each by half a unit. ThisNigefu! adjustment
is due to F. Yates. RN
Ex. 13'1. Frequency of'c%bhz'nalz'zj) among the
twin brothers or sisters pf\rriminals—Among 13
criminals who were mono;-:j;f.g’otic twins Lange reports
that 10 had twin brg,tﬁefs or sisters who had also .
been convicted, while\ii 3 cases the twin brother had,
apparently, not taken to crime. Among 17 criminals
who were dizygotic twins (of like sex), 2 had convicted
twin brotherSjor sisters, while those of the other 1 5
were not Known to be criminals. It is argued that
the envixprimental circumstances are as much alike for
dizygohic twins of like sex as for monozygotic twins,
andithat if the latter are more alike in their social
_eactions these reactions must be largely conditioned
by genetic factors. Do Lange’s data show that
N\ criminality is significantly more frequent among the
monozygotic twins of criminals than among the
dizygotic twins of criminals ?
Our data consist of the four-fold table :—
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TABLE zo'1
_’ Convicted. : Not Convicted. ! Total. |[
| II : 1
l Monozygotic . . 10 | 3 ‘ 13 |
5 Dizygotic C 2 15 % 1y I
j—— — e .
| Total . . 12 18 'I 30 J N
e L | ( &N
The difference {(ad—-5¢) is 144 and A

144%. 30 ,’t\\ '

2 : g N\
12.18.13.17 13032 \

a very significant value, equivalent to ermal deviate
361 times its standard error. PHe probability of
exceeding such a deviation in the'right direction is .
about 1 in 6500. A\
Using Yates’ adjustment*we should rewrite the
table with the larger frequenicies 1o and 15 reduced by
a half, and the smalig{\fl‘equencies 2 and 3 increased
by half. ¢ '\:\,.3
The differenige between the cross products ad—é¢
is now redyced~'to 129, which, it may be noted,
is just 15,:.\0{::\Ha1f the total number of observations,
less tham™yrs previous value 144. In other respects
the calg lation is unchanged. The new value of x? is
1@43‘8, still a very significant value for 1 degree
of Mreedom, but now corresponding to a normal
\ciéviation of 3-234 times its standard error, or to odds
of 1 in 1638. The exact odds in this case are 1 in
2150, as will be shown in the next section. The
adjustment has slightly over-corrected the exaggera-
tion of significance due to using a table of a continuous

distribution.
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z1-02, The Exact Treatment of 2 X2 Tables

The treatment of frequencies by means of 2 is an
approximation, which is useful for the comparative
simplicity of the calculations. The exact treatment
is somewhat more laborious, though necessary in
cases of doubt, and valuable as displaying the, true
nature of the inferences which the method ofax® is
designed to draw. RN

If p is the probability of any event, the probability
that it will occur ¢ times in (a+8) indqg{eﬁaent trials
is the term of the binomial expansion,\

(@t
PR APA

where g = 1—5. The probc}lzﬂ‘it; that in a sample of
(¢+d) trials it will occur ¢ times is

So that the pro &b‘ili%y of the observed frequencies
@, b, ¢, and & jn@2 x 2 table is the product

S Nyl et
O a2

&
and thisjin general must be unknown if # 1s unknown.
Thx{fn nown factor involving # and ¢ will, however,
belthe same for all tables having the same marginal

cfrequencies a-+¢, 444, @¢+6, ¢+d, so that among

N

) 3
7
4

“possible sets of observations having the same marginal

frequencies, the probabilities are in proportion to
I
al 8 ¢l dY
whatever may be the value of p, or, in other words,

for all populations in which the four frequencies are
In proportion,
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Now the sum of the quantities 1/al 8! ¢! 2! for all
samples having the same margins is found to be

2!

@t B et d) ! (@t ! G+d)!

where # = a-+b+c+d; so that, given the marginal
frequencies, the probability of any observed set of\\
entries is

@B () (a0 (b+d)! L C

#2! Toaldl c'\Q!“

$
2%

In the case considered in Ex }3.-'1,\ ‘we have
therefore

181 12! 17! 13! 1 A I
30! 21 31 10! 15! @bl 16! " 1l 12! 17!

for the probabilities of thg;ﬁséﬁ‘ of frequencies observed,
and the two possible mgte extreme sets of frequencies
which might havg.\ﬁeén observed. Without any
assumption or g.pg\roximation, therefore, the table
observed maykbe”judged significantly to contradict
the hypothesis of proportionality if
A 18] 1
§{\“ 30!

i§~.ja,'\\s”ﬁ1all quantity. This amounts to 6191330665,

\/
Ox'

3 (2692 102+ 1)

~or about 1 in 2150, showing that if the hypothesis
\“of proportionality were true, observations of the kind

.
\ )

recorded would be highly exceptional.

21-03. Exact Tests based on the ¥? Distribution

In its primary purpose of the comparison of a
series of observed frequencies with those expected

on the hypothesis to be tested, the x? test is an
H
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approximate one, though validly applicable in an
immense range of important cases. For other tests
where the ohservatlons are measurements, instead of
“frequencies, it_provides exact tests of significance,
Of these the two most important are :—

I/C . .

(1) its use to test whether a sample from .a
normal distribution confirms or con
dicts the variance which this dlstrrbutlon
is expected on theoretical grolmds to
~“have, and (N

(u) its use in combining the mdﬁatlons drawn
from a number of indépendent tests of
significance. . ‘S\“
AN
Ex. 14. Agreement wz'z% expectation of normal
variance.~1f %, % . . gudre a sample of a normal
populatlon the standarﬁl ‘deviation of which population
15 o, then ~ :
N 2 S—m
s
is distributédyin random samples as is x2, taking »
one less thdn the number in thesample. J. W. Bispham
gives thvee series of experimental values of the partial
cortelation coefficient, each based on thirty- observa-
tions of the values of three variates, which he assumes
~ Cshould be distributed so that 1/o?~=29, but which
V properly should have 1/o2=28. The values of S(x —%)?
for the three samples of 1000, 200, 100 respectively
are, as judged from the grouped data,

35°0279, 7+4573, 30146,

whence the values of x? on the two theories are those
given in Table 21.
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TABLE 21
‘ Exp. 1. 2. ‘ 3. Tatal, ! ’\/,_XT i !2::&';;:‘ !
29 S(z—&7 . . | 101581 216:26 104-82 | 1336-89| 5171 79
i 28 S{x—a) . . | 98078 | 208-80 | 1o1°21 | 1260°79 so-81 —-11
Expectation (2} . | 999 199 1 o 1297 5092

It will be seen that the true formula for the variance (),
gives slightly the better agreement. That the differys

ence is not significant may be seen from the lastywo
colurns. About 6000 observations would be{ﬁéeded
to discriminate experimentally, with any.t}rﬁainty,
between the two formulee. ’

N

\ Y
21+7. The Combination of Probabilities from
Tests of Significance

7

When a number of qy'ifé"i‘ndependent tests of
significance have been made, it sometimes happens
that although few or nofie can be claimed individually
as significant, yet d(ékggregate gives an impression
that the probabjlitﬁs; are on the whole lower than
would often haué been obtained by chance. It is
sometimes c@e\sired, taking account only of these
probabilit{es,'and not of the detailed composition of
the d: e from which they are derived, which may be
of very different kinds, to obtain a single test of the
saificance of the aggregate, based on the product

the probabilities individually observed.

The circumstance that the sum of a number of
values of x? is itself distributed in the x? distribution
with the appropriate number of degrees of freedom,
may be made the basis of such a test. For in the
particular case when z = 2, the natural logarithm of
the prohability is equal to —3x®. If therefore we take
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the natural logarithm of a probability, change its sign
and double it, we have the equivalent value of y? for
2 degrees of freedom. Any number of such values
may be added together, to give a composite test,
using the Table of x? to examine the significance of
the result.

Ex. 14-1. Stgnificance of the product of a ?zumée<\@f
independent probabdilities—Three tests of 51gn1ﬁcance
have yielded the probabilities r145, 263, ‘087 “test
whether the aggregate of these three tests.should be

regarded as significant. We have \\\
P —logsP (Deigrees of

+145% 1'g3I0 N/ 2

+263 133564 & 2

-087 24439} 2

)\ _

547085 6

g} = 114170

For 6 degrees ef freedom we have found a value
11417 for ¥ The 5 per cent. value is 12:592 while
the 10 per cefify’ value is 10- 645. The probability of
the aggregate of the three tests occurring by chance
thereforgnéxceeds -o5, and is not far from -075.

In a?pplymg this method 1t will be noticed that we
reghiré to know from the individual tests not only
whether they are or are not individually significant,

"‘but also, to two or three figure accuracy, what are the

\ D actual probab1l1t1es indicated. For this purpose it is

convenient and sufficiently accurate for most purposes

to interpolate in the table given (Table I11), using the

logarithms of the values of P shown. Either natural

or common logarithms may equally be employed. We

may exemplify the process by applying it to find the
probability of x* exceeding 11417, when 2 = 6.
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Our value of y? exceeds the 30 per cent. point by
-772, while the 5 per cent. point exceeds the 10 per
cent. point by 1-947 ; the fraction

2772
1947
The difference between the common logarithm of g

= *397.

and of 10 is -3010, which multiplied by *397 gives ‘119 ; .

~

N

the negative logarithm of the required probability i8>0

thus found to be 1-119, and the probability to be 976!
For comparison, the value calculated by exact m@fibds
is *07631. L&

22. Partition of x? into its Components

Just as values of x* may be agg{eg'éted together to
make a more comprehensive test, $o,in some cases it 1s
possible to separate the contribitions to x* made by
the individual degrees of freedom, and so to test the
separate components of a discrepancy.

Ex. 15. Partition @) observed discrepancies from
Mendelian expectqtzdéz}—ﬂ'l‘he table on p. 102 (de
Winton and Bateson’s data) gives the distribution of
sixteen families:0f Primula in the eight classes obtained
from a backiCross with the triple recessive.

The thebretical expectation is that the eight classes
shouldappear in equal numbers, corresponding to the
hypdthesis that in each factor the allelomorphs occur
with equal frequency, and that the three factors are

“Nlinked. This expectation is fairly realised in the
totals of the sixteen families, but the individual
families are somewhat irregular. The values of x*
obtained by comparing each family with expectation
are given in the lowest line. These values each
correspond to 7 degrees of freedom, and it appears that
in 6 cases out of 16, P 1s less than 1, and of these
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» are less than -02. This confirms the impression of
irregularity, and the total value of ¥* (not to be con-
fused with x* derived from the totals), which corre-
sponds to 112 degrees of freedom, is 151°78.

Now V223 = 14°93;
V30356 = 17-42;
Difference = --2:49;

so that, judged by the total x? the general evidénce
for departures from expectation in individual families
is clear. \’\\

Each family is free to differ from\expectation
in seven independent ways. To catry the analysis
further, we must separate the\qbﬁtribution to x?
of each of these 7 degrees ofﬁfi‘eedom. Mathe-
matically the subdivision may\be carried out in more
than one way, but the odly way which appears to
be of biological interestlis that which separates the
parts due to inequ fity of the allelomorphs of the
three factors, a}\d{:,t e three possible linkage con-
nexions. If we separate the frequencies into positive
and negatixie;w‘values according to the following
seven Wwe {;(s,.:-—

O

TABLE 23
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then it will be seen that all seven subdivisions are
wholly independent, since any two of them agree
in four signs and disagree in four. The first 3
degrees of freedom represent the inequalities in the
allelomorphs of the three factors Ch, G, and W ; the
next are the degrees of freedom involved in an inquiry
into the linkage of the three pairs of factors, while
the 7th degree of freedom has no simple biobgigzal
meaning but i1s necessary to complete the anﬁlysm
If we take in the first family, for exampleg “the differ-
ence between the numbers of the W afid w plants,
namely 8, then the contribution afithis degree of
freedom to x?® is found by squa g the difference
and dividing by the number i the family, e.g.
82 +92 = -889. In this Way~ Jthe contribution of
each of the 112 degrees of -freedom in the sixteen
families is found separa;el}r, as shown in the following
table :—

“ TABLE 24
¥ —— B _
Family.| Ch. Gy '\\..‘W. GW. |ChW.| ChG. |ChGW.| Total

54 3556 2¥000 -88¢g 222 | zwoo| -88g 222 o778
55 070\ 3-034 076 | 3-034 412 | 1-017 *2la 7839
58 #8201  -B20 Bz0 2951 1-607 | ‘820 205 R477
59 (4153 -831 | 4-808 ‘017 | fir11g 831 *153 | 13-002
107 \6 720 269 | 3108 | 1817 ‘007 269 -269 12+540
1;0\ 14+8B2r | 1-282 821 821 205 | 1-282 G 19232
,,{uj’ 6261 391 301 "174| 2+I130| 043 696 | 10-086
HSIZ2I |jriooo | @ o -3604 818} -o91 0g1 12'364
) 122 161 | 6200 | 1090} 1°865| 523 316 | u-gogz | 18-038
127 610 024 220 610 | 1195 | 220 1976 4855
129 'goo | 1600 | O ‘400 | 100 | QOO Qoo 4-%o0
131 172 -0b2 06z 062 00z | -338 8-448 9206
132 163 701 320 | 320 059 | 1-471 059 3183
133 220 220 | 4-122 024 | 8-Bog $220 610 14321
135 211 | 3368 1-316 ‘053 ‘053 | © 053 5854
178 258 835 093 ‘003 ‘010 | -258 ‘50§ 2:052

Total | 46:102 | 21+727 | 18-226 | 10-171 | 24-195 | 8-065 | 22:3090 | 151-776 |
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Looking at the total values of x* for each column,
since 7z is 16 for these, we see that all except the
first have values of P between ‘05 and -g3, while
the contribution of the 1st degree of freedom is very
clearly significant. It appears then that the greater
part, if not the whole, of the discrepancy is ascribableto ™
the behaviour of the Sinensis-Stellata factor, Ch, and "<\
its behaviour strongly suggests close linkage with a()y
recessive lethal gene of one of the familiar types. {In' ~
four families, 107-121, the only high contributiopis in
the first column, If these four families are ei;}uded
y¥* = 97'545, and this exceeds the expéctation for
7 = 84 by only just over the standard erfor’; the total
discrepancy cannot therefore be regard’e\d as significant.

There does, however, appear toBean excess of very
large entries, and it is noticeablgip‘f the seven largest,
that six appear in pairs belopging to the same family.
The distribution of the rema’;tinihg 12 families according
to the value of P is as ’f'{)ll‘o‘ws —

¢ ";:.’TABLE 2
2\ 5

g\lgl B4 \ 5 ‘ 3
,_F .l- \l.'\'“
amil 1%"131 1
* A\

.frc}fh’ which it would appear that there is some
Sslight evidence of an excess of families with high
values of x2. This effect, like other non-significant
effects, is only worth further discussion in con-
nexion with some plausible hypothesis capable of
explaining it.
The general procedure to follow in analysing x?
into its components will be developed in Section 55.

=] 1 2

4
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Ex. 15°1. Complex fest on homogeneity in data
with hierarchical subdivisions.—Table 25-1 shows the
total number of offspring and the number of recom-

TABLE 251

ToTal Praxrs {T) AND RECOMBINATIONS (C) IN 22 PROGENIES
AND IN THE ACGREGATES OF PROGENIES IN WHICH THEY ;.13{

GROUPED. A\
Descendants of ¢ " 3
e
g{:‘ﬂ: Fraternities. PE"IET‘ES Grand%i;"etm:tf \‘\w“. Total.
X ..\ W
AS
T c T c T c T c T o
4 3 } - A
43 8 7 } 171 21 .\'\ 4
94 10 | 94 10| NE
73 37 « \J
20 2 . e\t | 427 42
% 2 } 130 8 l "'.':..
21 1 o\
31 6 ] ‘256 21
N < _
20 N 126 '\13‘ ) | |
X5 1 \\ .| g2z 10§
64 91| &
K & 22 | 11 2z | 11 22
55 13 {: .;‘,,9_ 9 9
35 e 8 12 8 12 )
34 B ?
A3 373 37 3
%57\\ 7 376 4
w2 o) J 108 9 l
(35 2
\”\}M, 58 3 ] 250 20
4 44 5 ;{142 I7
o 4]

1

binations found in 22 progemtes of the garden pea,
grown by Rasmusson. Each progeny was derived
from a single plant, tested by back-crossing. Unequal
numbers of these plants belonged, as shown by the
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table, to g different fraternities, for each of which
the total number of offspring and the total recom-

TABLE 252

&2
VALUES OF T FOR ALL GROUPS AND SUBGROUPS

Individual Fraternities. Parents \ Grandparents Total.

Plants. F,. Ty, A\

020471 ) . .\
48837 )| TS | 2 gm0
1-06383 106383 \\ ’
012329 ‘
o 20000
Q" 25000

or04762 572266 J z\J I

1+ 16129 ' N
031373 J Q\v

049231 ]

o1z703 [| 34 \
o 06667
1- 26562
307273
o 8909E

N\ ¢ 1195770
gobyez . 490723 | 496723
} 1-61708 \.<\1'81798 ;
0-24324;:;\ 0 24324 l

1-08885 A\ 447074
or75000 ]

N\

o 94118 11 J
o 56818 &F 2703521

2° 70400

I

ol

AN s7izo | 1z18zs0 | 12793406 § 1266012 1195770
a \% :

\/

1- 38860 o 24844 o' 20494 o 71142 Diﬂ'e:ences.
13 760 27462 2-625 7050 x
13 3 3 2 "

binations are shown in the table. In three cases,
moreover, 2 fraternities had been derived by different
matings of the same parent plants, which had been
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bred with a view to this linkage test, so that the
9 fraternities were the offspring of 6 F, parents,
which in turn were derived from 3 F, grandparents.
In all, the final generation yielded 922 plants, of which
105 were of the types recognised as recombinations.
[t is required to test whether heterogeneity in. t\he
fraction of recombinations obtained occurs apy any
of the four stages represented by the groups Jand
subgroups of progenies. \

The method of Brandt and Snedecog\m of great
value when adapted to the analysis, 6f ‘data of this
kind. If in any progeny, or group of progenies, we
have ¢ recombinations out of T\}ﬂants, we may at
once calculate ¢2/T for eachgroup in the record.
These ratios appear m Table’ 2572 arranged to show
the affiliations of the dlf”fexent groups and subgroups.
Whenever the propornon of recombinations cbserved
is different for different subgroups of the same group,
the values for thiese subgroups will together exceed
the value fox{thHe corresponding group; thus the
five totals shown in Table 25-2 form a diminishing
series, th(a\'sﬁccessive differences between the terms of
which afford measures of the heterogeneity observable.

\[ﬁ such a process were applied to completely
homogeneous material, it would only be necessary to

. \dwide each of these differences by the same quantity,

\J 2g, where p is the proportion of recombinations and
g of old combinations, to obtain values distributed
in x? distributions, The numbers of degrees of free-
dom appropriate to each are the differences between
the numbers of entries in the successive columns, -
It is apparent from the values at the foot of the
table that the only apparent heterogeneity in the
linkage values occurs among the I, plants, or at
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the earliest stage at which segregation might appear.
Here the value of ¥? is 7-050 for 2 degrees of freedom,
a value which lies between the 5 per cent. and the
2 per cent. points. It is probable, therefore, that
segregations affecting linkage occurred at this stage,
and, in consequence, the values we have obtained for
later stages must be revised with this heterogeneity

| | ¢ \\’\
M VIeW, )

A
No/ 3

A P

TABLE 253 O

DIFFERENCES AMONG SISTER PLANTS AND SUBGROUPS, Vf’f%l
DEGREES OF FREEDOM CORRESPONDING °{

X 3

PSIE:;::, I];Irz]é':ﬁte: ¥y l:'lants.x \\D Fg Plants.
\\;\: 4

. £\
18165 (1) } o363t (@) | | ®
‘12860 (3) 1| . ".:1.,'?04 1
3383 () | TR j“
~z7112 (1) -n1142 {2)
-ooB22 (1) \\\ l

0 . 8 (2)
*45318 (2) R S o944
00748 (2) } N 68121 {1} J

P\ ¥; -

A gﬁ?ﬁ}iﬁily applicable procedure would be to
recaloilate the divisor, 27, for each of the three
Fggﬁihnts. In this case, however, it is evident that
~the first and third of these differ but little, having
N\secombination fractions g-836 per cent. and 10-9o4 per

cent. respectively, while both show closer linkage than
is shown by the descendants of the second plant,
which gave 18:487 per cent. We shall, therefore, in
recalculating x? use the same fraction, 83/803, for the
descendants of the first and third F, plants, and the
fraction 22/119 for the descendants of the second plant.
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When different factors are to be applied in different
parts of the table a convenient first step is to take
the differences between the total value for the sub-
groups, and the value for the group to which they
belong, in each available case, as is shown in
Table 25-3. In this table the whole set of 21 degrees
of freedom has been partitioned among 13 entries.
The values of x2 to which these parts cotredpond
depend on the values of g, by which they are/divided.
In the case of the 2 degrees of freedp{ﬁ"among the
F, plants we must use p = 105/922,obtaining as
before 2 = 7-0498 for 2 degrees offréedom. For the
descendants of the first and thipd\F, plants we divide
by 0926786, and for the iiiasjcéndants of the second
plant by ‘1506956, so obtaifiisig the values of x* shown
in Table 25-4. R\ ¥

: FABLE 254
x® FOR ;gfﬁELEVANT SUBDIVISIONS

.h\ _ ! T
prster. . <:\' \P ;';;:I‘;Zr F, Plants. F, Plants.
NM
1-9602 @~ } 6076 (1)
+8393 (1)
14876 (3) : } i
\bson (y J| 1680
.'{\I"?QQI (1) 70498 (2)
*0887 () :
48898 (2) || o, } 10194 (2)
0807 (2) | 8763 (1)
138567 2-6807 2:8587 700498
I3 3 . 3 z

The totals for the different subdivision stages do
not differ greatly from those shown in Table 25-2, but
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afford a better test for heterogeneity in these later
stages, once it is suspected that the F, plants were

not homogeneous. [t will be observed, in fact, that

the value of x? for the 3 degrees of freedom representing
differences between the pairs of half-sister progenies
from the same F, plants, and that for differences
among the F; plants, are slightly raised, through using - N\
a smaller divisor for the descendants of the first an'dp,.\
third F, plants, since in these columns there is no ™
compensation due to using a larger divisor for\ the
descendants of the second plant. O ?

The absence of significant values in the-first three
columns of Table 254 shows that no further modifica-
tions of the divisors are necessary, gip}é there is no
further evidence of heterogeneity\ié\

N/

[TabLE
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S : . TABLE II1—
™ : 1
. - P=wg 98, 95, LelN 8o, o, E
T Reloled 4] -oooh28 00393 I8 -ob4z 148
2 0201 0404 -103 211 -446 13
3 “I13 18y - *332 584 1-005 I424 .
4 297 429 oyIT 1-064 1-049 '\sQ‘gs
5 *554 “752 1143 1610 | 2:343 () '3:090 :
6 872 1-134 16335 2:204 Foges |7 3828
7 | 1239 1:564 2167 | 2833 ,3}532”2" 4671
8 | 1646 2032 2733 3490 N304 | 5527
9 | 2088 2:532 3325 4168\ 5380 | 6393
10 | 2558 3059 2-040 4-365" . 617y 267
1| 3053 3-609 #5754 5578 | 6985 | 8148
12 3571 4178 5-223\\\ 6:304 7-8oy 9034
13 | 4197 4-765 5:?95"' 7-042 8-634 9-926
14 4-660 5-368 ‘»."6“3—:5’;'1 7790 Q467 ro-32t1
15 5229 5-085 w261 8-547 Ic-307 | 11721
i6 | 5812 6-614'\\’ 7gbz 9312 1e-152 | 12-624
17 6408 7-:253 1 8072 10:083 r2.002 ¢ I3531
1% | y-o1g & hgas 9:390 10-865 | 12-837 | 74-440
rg | 7633 () 8567 10-117 11651 | 13716 | 15352 |
20 8-26;1’;.1“ 9237 l 10-851 12:443 14578 | 16:266
. x'\\.f ;
21 | 8897 915 1501 | 13240 | 15445 | 17182
zg\”\\é';sa}z 10-600 12:338 14041 | 16314 | 18101
238 10-196 1I-293 13001 14:848 17-18% 19-021
\Q‘i | To-356 11-gg2 13-848 | 15:6590 18.062 15:943
25 | 11524 12-697 14-011 16-473 18-040 | 20:867
26 | 12-193 13-400 15:379 14202 19:820 214592
2% | 12879 14-125 16151 18114 20703 22719
28 | 13565 14-847 16-928 18939 | 21-588 | 23:647
29 | 14-256 15574 17708 19-768 22475 24577
30 {14953 | 16-306 18493 | 20:599 | 23-364 | 25508 ‘

For larger values of , the expression y/ay#— /271
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TABLE OF y?
.30, +30. .20, 10 05, 02, ’ DI,
455 074 1-642 2.q00 3831 : 5412 : 6633
1-386 2-408 3219 4005 5041 ! 7824 | G210
2-360 3-605 4642 6-251 7815 837 {1343
#3357 | 4878 | 598y | 7uyg | 9488 [ ap668 1 1327,
4351 6.064 7289 g236 | 11070 . 13388 1508,
5-348 7-231 8558 | to-6a5 | 12592 15033 ] 168127,
6-346 8.383 ¢-8o3 12:017 1yob7 | 160:022 ":.’%Q;S :
7344 9524 | 11030 | 13362 | 15507 | 18-168§ "Sp-0g0 I.
8343 | 106356 | 120242 | 14684 | 16919 19»%7:@.\ 21-666 |
o342 11-981 13442 15-987 18:307 "zl.-:fn 23-209
10°34T r2-899 14631 17275 19-6% N22.618 24-72%
11-340 14-011 15-812 18549 | 21e? " | 24054 | 26-217
12340 | 15119 | 16-985 19-812 {:?fz?jﬁz 25472 | 27-088 |
13330 16-222 18151 21-06’4::‘.; ‘23685 | 26-873 | 29141
T4-339 19-322 | 19-3II 2253’;3'«;&" 24996 | 28259 | 30578 i
15338 18-418 20:405 43}542 26296 | 20633 . 32000 '
16-338 | 1g-5rr | 2101 A N24:-769 27587 | 30995 ! 33499
17338 | zo-bor | 22,409 25989 | 28869 | 32:340 | 34505
18-238 | 21-639 2’3@0’0 27204 | 30144 | 33087 | 36101
19-337 22-775’,,?::5-038 28-412 3410 | 33020 | 37-500
N4
20337 | 23888 | 26171 | 29615 | 3267 36-343 1 38932
2337 \Gh030 | zraer | 30813 | 33924 | 37659 | 402589
22337 [N26.018 | 28429 | 3zooy | 3yr7z ) 38968 T 41-638
23:&3”1‘ 27096 | 29553 | 33196 | 36415 | do-270 42980
Suxyy | 28172 | 30675 | 34382 37652 | 41366 44314
nggﬁ 2g246 | 31795 | 35'563 38:885 | 42856 435042
26336 | 3o-319 | 32012 | 30740 | 40113 44140 1 46963
27336 | 31301 | 3aez7 | 37916 | 41337 | 45479 | 48278
28336 | 32461 | 35130 | 39087 | 42557 46-693 | 49588
29336 | 33530 | 36250 | 40256 | 43773 47962 | 5o-892

may be used as a normal deviate with unit variance.

O
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TESTS OF SIGNIFICANCE OF MEANS, DIFFER-
ENCES OF MEANS, AND REGRESSION C\Q
EFFICIENTS

' 3
€ W3
7

23. The Standard Error of the Meam .~
THe fundamental proposition upon wh;eﬁh\the statis-
tical treatment of mean values is based\s that--If a
quantity be normally distributed withwariance o2, then
the mean of a random sample of’722Such quantities is
normally distributed with variafice o/x.

The utility of this proposltic}n 1s somewhat increased
by the fact that even if the original distribution were
not exactly normal, thaf ‘of the mean usually tends to
normallty, as the 51ze of the sample is increased ; the
method is therefol‘e applied widely and legitlmately
to cases in whith’we have not sufficient evidence to
assert that the original distribution was normal, but
in whichh\wé have reason to think that it does not
belong“t:o the exceptional class of distributions for
whl,Qb the distribution of the mean does not tend
to hormahty

' If, therefore, we know the variance of a population,

\ ‘we can calculate the variance of the mean of a random
sample of any size, and so test whether or not it
differs significantly from any fixed value. If the
difference is many times greater than the standard
error, 1t is certainly significant, and it is a convenient
convention to take twice the standard error as the
limit of significance ; this is roughly equivalent to

IT4
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the corresponding limit P = -03, already used for the
x? distribution. The deviations in the normal distri-
bution corresponding to a number of values of P are
given in the lowest line of the Table of 7 at the end of
this chapter (p. 174). More detailed information has
been given in Table 1.

Ex. 16. Significance of mean of a large sample.—

We may consider from this point of view Weldon’s(\)

die-casting experiment (Ex. 5, p. 63). The variable
quantity is the number of dice scoring “5” qr;\“‘”ﬁ "
in a throw of 12 dice. In the experiment thisumber
varies from zero to eleven, with an cbservedvmean of
40524 ; the expected mean, on the hy wthesis that
the dice were true, is 4, so that the Qe{:i&tion observed
is -0524. 1f now we estimate thevvariance of the
whole sample of 26,306 values a8, explained in Ex. 2,
without using Sheppard’s correction (for the data are
not grouped, and even witht grouped data, since the
mean is affected by gPfouping errors, its variance
should be estimate‘d.\w@ﬁfout this adjustment), we find
2

AN, o = 2:69826,
whence &7 o¥n = 0001026,
and 7.\ ojv/n = r01013,

Th Mndard error of the mean is therefore about
'OIKé.ﬁ% the observed deviation is nearly 5-2 times as
great ; thus by a slightly different path we arrive at
\thé same conclusion as that of p. 65. The difference
between the two methods is that our treatment of
the mean does not depend upon the hypothesis that
the distribution is of the binomial form, but on the
other hand we do assume the correctness of the value
of o derived from the observations. This assumption

breaks down for small samples, and the principal
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purpose of this chapter is to show how accurate
allowance can be made in these tests of significance
for the errors in our estimates of the standard
deviation.

To return to the cruder theory, we may often, as
in the example above, wish to compare the obserfed
mean with the value appropriate to a hypothems wiiich
we wish to test ; but equally or more often we wish to
compare two experlmenta.l values and td, fest their
agreement. In such cases we require theé variance of
the difference between two quantities whose variances
are known; to find this we make use of the pro-
position that the variance of,the difference of two
independent variates is equdl'to the sum of their
variances. Thus, if the sfandard deviations are oy,
oy, the variances are gy 2 and o,?; consequently the
variance of the dlﬂ'er,enee 18 0,2 +0,2, and the standard
error of the dszerence s Vot to,2,

Ex. 17. Sz’@%dard error of dzference of means -
f:rom large m;)x,z)[es ——In Table 2 is given the distribu-
tion in stature of a group of men, and also of a group of
women’}\ ‘the means are 68-64 and 63-87 inches, giving
a différence of 4'77 inches. The variance obtained
fo%the men was 7-:3861 square inches. D1v1d1ng
~t}}15 by 1164, we find the variance of the mean is
\:\. «000345. Similarly, the variance for the women is
6+7832, which divided by 1456 gives the variance of
the mean of the women as -004659. To find the
variance of the difference between the means, we must
add together these two contributions, and find in all
‘011004 ; the standard error of the difference between
the means 1s therefore 1049 inches. The sex difference
in stature may therefore be expressed as

4+77-=10% inches.
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It is manifest that this difference is significant,
the value found being over 45 times its standard
error. In this case we can not only assert a significant
difference, but place its value with some confidence at
between 43 and 5 inches. It should be noted that we
have treated the two samples as independent, as though |
they had been given by different authorities; as a, N
matter of fact, in many cases brothers and sistefs D
appeared in the two groups ; since brothers and sisters
tend to be alike mn stature, we have overestirqa{é}i‘.the
probable error of our estimate of the sex difference.
Whenever possible, advantage should \be-taken of
such facts in designing experiments. ,In'the common
phrase, sisters provide a better .'\“c\("}ritrol " for their
brothers than do unrelated womgny (See Design of
Experiments, Chap. 111.) The-sex difference could
therefore be more accuratej.yfeé,'timated from the com-
parison of each brother «§ith his own sister. In the
following example (Peatson and Lee's data), taken from
a correlation table,&f stature of brothers and sisters,
the material is pearly of this form; it differs from it
in that in some idstances the same individual has been
compared \thh more than one sister, or brother.
E&;‘S Standard evvov of mean of differences—

The following table gives the distribution of the excess

in_stature of a brother over his sister in 1401 pairs.
TABLE 26

Stature

difference -5 -4 -3 -2 I o 1 2 3 4 5

in inches J

Frequency 25 1*§ 1-25 4'5 1I'2§5 2§7'5 71075 12275 17075 209vF5 22075

Stature
diﬂ’erenceJ' 6 i 8 9 fo II 12 13 14 15 16 Total

in inches
Frequency 2055 14875 9575 57 26 1125 85 275 1 1 -75 1401
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Treating this distribution as before, we obtain :
mean = 4-895, estimate of variance = 65480, variance
of mean = -004674, standard error of mean = 0684 ;
showing that we may estimate the mean sex difference
as 4% to 5 inches.

In the examples given above, which are typical c{f
the use of the standard error apphed to mean values,
we have assumed that the variance of the popn‘lauon
is determined with exactitude. It was pomted ‘6ut by
“ Student ” in 1908, with small samples,/ stuch as are
of necessity usual in field and laboratory\experlments
where the variance of the populatlon can only be
roughly estimated from the samp].e\ that the errors of
estimation are calculable, and Bhat accurate allowance
can be made for them, O

If x (for example the m&n of a sample) is a value
normally distributed ab@ut zero, and o is its true
standard error, then.the probability that x/o exceeds
any specified value\}nay be obtained from the appro-
priate table of ¢he’normal distribution ; but if we do
not know ¢, But in its place have s, an estimate of the
value ofarkhe distribution required will be that of x/[s,
and tth\Is not normal. The true value has been
dividéd by a factor, sfe, which introduces an error.
We have seen in the last chapter that the distribution
dn*random samples of s2/o? is that of x*/7 when 7 is

\ ) equal to the number of degrees of freedom, in the group
(or groups) of which s? is the mean square deviation.
Consequently, the distribution of sfe is calculable,
and although o is unknown, we can use in its place
the fiducial distribution of ¢ given s to find the
probability of x exceeding a given muiltiple of s.
Hence the true distribution of /s is all that 1s
required. The only modification required in these
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cases depends solely on the number #, representing
the number of degrees of freedom available for the
estimation of ¢. The necessary distributions were
given by “ Student ” in 1908 ; fuller tables have since
been given by the same author, and at the end of this
chapter (p. 174) we give the distributions in a similar
form to that used for our Table of ¥2.

24. The Significance of the Mean of a .

Unique Sample \

If %y, %5, . . . %, 15 2 sample of »’ valug\.t) of a

variate z, and if this sample constitutes the\whole of

the information available on the poing\in question,

then we may test whether the mea}r of » differs
significantly from zero by calculas{ng the statistics

f=—— - S(x),,

2
f— == —-———*—» S(x——:r)

#' (?z —-‘-51)

AN
‘..;f\—x. \n"
N =1,

Arithmeticallyy, the calculations depend on the
simple fac that the sum of squares of deviations from
the am: Jmay be obtained from the sum of squares
of devidtions from zero by deducting the product of
the~ total and the mean. Thus,

Q' ) S(x%) = S(x—%)? + 25(x).

N\ This is a sub-division of the sum of squares of x
into two portions, the first of which represents varia-
tion within the sample, while the second is due only
to the deviation of the observed mean from zero.
The first part has »—1 degrees of freedom, and the
second part only 1. The more complex cases treated
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in later chapters are greatly simplified by setting out
these two sub-divisions, of the sum of squares and of
the degrees of freedom, in parallel columns and
comparing the mean squares in each class. Thus in
this case we have

Degrees of Sum of !, ¥
Freedom. Squares. Mean Squ}n}
Deviation . . I #S(x) L %t
Within sample . n-1 S{x—)? N 3 5
Total . . % S(xg):x\
Y ; l;

The mean squares are olqgamed in each class by
dividing the sum of squareés*by the corresponding
degrees of freedom, Thewbserved ratio of the mean
squares is, in this case, &% This useful form of arrange-
ment is of much widest épphcatlon than the algebralcql
expressmns by W}{&h the calculations can be expressed,
and is knowncas.the Analysis of Variance.

The dlstrlbunon of for random samples of a normal
populatio? Histributed about zero as mean is given in
the Tahle of # for each value of z. The successive
colufiins show, for each value of #, the values of ¢ for
wh&ch P, the probability of falling outside the range

~\:}:z takes the values +g, . . ., -01, at the head of the
“columns. Thus the last column shows that, when
7 == 10, just I per cent. of such random samples will give
values of 7 exceeding 4 3-16¢, or less than —3+169. If
it is proposed to consider the chance of exceeding the
given values of £ in a positive (or negative) direction
only, then the values of P should be halved. It will
be seen from the table that for any degree of certainty
we require higher values of # . the smaller the value
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of #. The bottom line of the table, corresponding to
infinite values of 7, gives the values of a normally
distributed variate, in terms of its standard deviation,
for the same values of P,

Ex. 19. Significance of mean of a small sample.—
The following figures (Cushny and Peebles’ data),
which I quote from “ Student’s "’ paper, show the result
of an experiment with ten patients on the effect of()
two supposedly soperific drugs, A and B, in producii}‘g -
sleep. TABLE 27 \

ADDITIONAL HOURS OF SLEEP GAINED RY THF U’%
OF TWO TESTED DRUGS. . }

Patient. A, B L 4 {‘\I%t]';r:-‘i\n){e
! AN\
- [ ._.\_\\\.;. ).
! tey 'HE} +1z
2 —16 &Ro'8 P
3 —oz | o Q% +1°3
4 —12 :‘. o1 i +1°3
5 —O L AN —_r1 oo
6 ‘F3'.ZP\\ ! +4:4 410
70 ¢ Qi‘ ; “+53 418
8 Yos&8 | F16 o8
9 N oo 446 446
10 W77 o tya | tre
Mead® | 475 +233 Frs8
\‘“3 :

S
,.\*T‘i\m last column gives a controlled comparison of
“tite’ efficacy of the two drugs as soporifics, for the same
patients were used to test each: from the series of
differences we find

F= +138,

‘5-2

N 1 ,

s 1513
/v 10 = *3890,

= 400.
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For # = 9, only one value in a hundred will exceed
3-250 by chance, so that the difference between the
results is clearly significant. By the methods of the
previous chapters we should, in this case, have been led
to the same conclusion with almost equal certainty ;
for if the two drugs had been equally effective, positive
and negative signs would occur in the last colufnn
with equal frequency. Of the 9 values other than
zero, however, all are positive, and it appea‘rs From
the binomial distribution, |\

3+£° o’
that all will be of the same sign, by cha\.nce only twice
in 512 trials. The method of the “present c}upter
differs from that in taking accoufitof the actual values
and not merely of their sighis, and is consequently
the more sensitive method. when the actual values are
available. N
24°1. Compéu‘ié‘.on of Two Means
In experimental ‘work it is even more frequently
necessary to tesl\ whether two samples differ signi-
ficantly in flieir means, or whether they may be
regarded g belonging to the same population. In the
latter casé’any difference in treatment which they may
have/téceived will have shown no 51gn1ﬁcar1t effect
\I‘fxl, Zay o vy mprr and X'y, g, o X be

',jt;}ro samples, the 51gn1ﬁcance of the difference between
() their means may be tested by calculatmg the following

StatlSthS . 1
o S(x), % =
1
52— ~ f " {S(x—x‘)2+ S(x'-—:E’)z}
177 g
— _f’\/(”fl' 1)(zg+1)
§ syt 2 '

1= ?31"}"?32-
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The means are calculated as usual ; the standard
deviation is estimated by pooling the sums of squares
from the two samples and dividing by the total number
of the degrees of freedom contributed by them; if ¢
were the true standard deviation, the variance of the
first mean would be o%/(2,+1), of the second mean
o%/(ny+1), and therefore that of the difference would "\
be o® {1/(y+ 1)+ 1/(ne-+1)}; ¢ is therefore found by
dividing £—% by its standard error as estimated,@nd”
the error of the estimation is allowed for by ﬁlter'ing
the table with # equal to the number of deg ees of
freedom available for estimating s; that§ 7=1, + 7.
It is thus possible to extend ** Student’s \treatment of
the error of a mean to the comparison,\df the means of
two samples. WO

The method of building the corresponding analysis
of variance for this case should be studied. If we

ut down the analyses fgﬁ'd{e two samples separately

and add their items, we have

o\[{;e;,%zze;; f Sum of Squares.
Deviations QO 2 £5(x) +-& S ‘
Within sa@ﬁzs ot S(—HHSE—E) |
y g ¢ y [

3 ) S S(x'2
f\Qstal . 4tz (%) +5("9 ]

LN
:Bui:‘ if we had treated all the observations as a single
<\‘;S“eimple with mean #, we should have

L]

Degrecs of Sum of Squares.

Deviations - - 1 mS(x) +mS(x")
Within samples . | #2211 S(x—m)t+-5{x —m)?

Total T S(xD)+5(x"%)

r v e——
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These are two different analyses of the same total,
and since all comparisons within the separate samples
are also comparisons within the grand sample made
by throwing them together, we may subtract one
from the other, obtaining

I}i%igcosn?f Sum of Squares. P \\
Difference . 1 £S5 (x) +x2'S{x")—mS (x)—*;i S(;c’)
Within samples . | 7,47, Sle—ay+-SES )
Total . | mpbngb1| S@H+SEHEHS() —mS(r)

Each item 1s now easily calcul\ted The student
will do well to venfy that 72 o.bl:a.med from the pro-
cedure first set out is in fach.the ratio of the mean
squares obtained from thes a.naly51s of variance.

It may be noted inf{eennexion with this method,
and with later developments, which also involve a
pooled estimate of\fho variance, that a difference n
variance betweén” the populations from which the
samples are drawn will tend sometimes to enhance the
value of A obtamed The test, therefore, is decisive,
if the Vébl’[le of # is significant, in showing that the
samples could not have been drawn from the same
pepulation ; but it might concelvably be claimed
. :‘ohat the dlfference indicated lay in the variances and
\Jnot in the means. The theoretical possibility, that
a significant value of # should be produced by a
difference between the variances only, seems to be
unimportant in the application of the method to experi-
mental data; as a supplementary test, however, the
significance of the difference between the variances may
always be tested directly by the method of Section 41.

[t has been repeatedly stated, perhaps through a
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misreading of the last paragraph, that our method
involves the “ assumption " that the two variances are
equal. This is an incorrect form of statement; the
equality of the variances is a necessary part of the
hypothesis to be tested, namely that the two samples
are drawn from the same normal population. The
validity of the £test, as a test of this hypothesis, is-
therefore absolute, and requires no assumption whags
ever. It would, of course, be legitimate to mdké a’
different test of significance appropriate o .the
question : Might these samples have been draswn from
different normal populations having the.gamé mean ?
This problem has, in fact, been solved,JBut in relation
to the real situations arising in biolog’)’éz{l research, the
question it answers appears Lo b&se;m[ewhat academic.
Numerical tables of this test were first calculated by
P. V. Sukhatmé, and are of Uise, when there is reason
to suspect unequal varie}géés, in removing any doubt
from the interpretatioitvof the test of significance.
(Statistrical Tables, N1 and V2.)

Ex. 20 Sightficance of difference of means of
small sampless—Let us suppose that the figures of
Table 27 stigd been obtained using different patients
for the gwo drugs; the experiment would have been
less ’\Kéh"controlled, and we should expect to obtain
1ess\¢}ertain results from the same number of observa-
ions, for it is a priort probable, and the above figures

\“\:éilggest, that personal variations in response to the
drugs will be to some extent similar.

Taking, then, the figures to represent two different

sets of patients, We have

i—x' =418,
3H-4) = 7210
= 4-1+861,

n=18.
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The value of P is, therefore, between -1 and -05, and
cannot be regarded as significant. This example
shows clearly the value of design in small scale experi-
ments, and that the efficacy of such design is capable
of statistical measurement.

The use of ““ Student’s ” distribution enables us to
appreciate the value of observing a sufficient numb@r
of parallel cases ; their value lies, not only in théfact
that the standard error of a mean decreases ir@}er"sely
as the square root of the number of parallels, but in
the fact that the accuracy of our esgithate of the
standard error increases simultaneously.) "The need for
duplicate experiments is sufﬁcientlyw.widely realised ;
it is not so widely understood th;rt‘&l some cases, when
it is desired to place a high degree of confidence (say
P = -01) on the results, griplicate experiments will
enable us to detect diffétences as small as one-
seventh of those Whic}ﬁ;’fvith a duplicate experiment,
would justify the safne degree of confidence.

The conﬁdenge}to be placed in a result depends not
only on the niagnitude of the mean value obtained,
but equally, idn the agreement between parallel experi-
ments. Elrts, if in an agricultural experiment a first
trial sews an apparent advantage of 8 bushels to the
acreyand a duplicate experiment shows an advantage
Qﬁb bushels, we have # = 1, # = 17, and the results

Cwould justify some confidence that a real effect had

QO

been observed ; but if the second experiment had
shown an apparent advantage of 18 bushels, although
the mean is now higher, we should place not more but
less confidence in the conclusion that the treatment was
beneficial, for # has fallen to 2+6, a value which for
n = 1 is often exceeded by chance. The apparent
paradox may be explained by pointing out that the
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difference of 10 bushels between the experiments
indicates the existence of uncontrolled circumstances

so influential that in both cases the apparent benefit
may be due to chance, whereas in the former case the
relatively close agreement of the results suggests that
the uncontrolled factors were not so very influential.
Much of the advantage of further replication lies in_
the fact that when few tests are made, and these only N
duplicated, our estimate of the importance of “‘ttl’ie;x
uncontrolled factors is extremely hazardous. W/

In cases in which each observation of on€ Series
corresponds in some respects 10 a particula’(gserva-
tion of the second series, it is always Jegitimate to
take the differences and test them, as.in Ex. 19, as
a single sample ; but it is not always desirable to do
so. A more precise comparisopiy obtainable by this
method only if the correspongding values of the two
series are positively correlated, and only if they are
correlated to a sufficientiextent to counterbalance the
loss of precision due #&'basing our estimate of variance
upon fewer degregs of freedom. An example will
make this plain.

Ex. 210 Significance of change in bacterial
nambers, —>The following table shows the mean
numbe <}f bacterial colonies per plate obtained by

O TABLE 28
'“\' :0 —————— - l '

Y a\" Method. 4 P.ML S rM. Difference.
\ / [ ;
A 29°75 3920 +945
B 2750 4o 6o +1310
C 3025 36-20 +595

D 2780 4240 +1460
Mean 28- 825 39-6o 410775 i

I ME———————
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four slightly different methods from soil samples taken
at 4 P.M. and 8 p.M. respectively (H. G. Thornton’s
data),
From the series of differences we have 2=+ 10775,
352 = 3756, £ = 5°560, 2 = 3, whence the table shows
that P is between o1 and -02. If, on the contrary, we
use the method of Ex. 20, and treat the two separﬁte
series, we find Z—2%'= 410775, 352=2-188, z‘—~7'285,
7z = 6; thisis not only a larger value of # but  larger
value of £, which is now far beyond the kénge of the
table, showing that P is extremely anall In this
case the differential effects of the different methods
are either neghg1ble or have acteﬁ quite differently
in the two series, so that prec1s¢0~n ‘was lost in compar-
ing each value with its countérpart in the other series.
In cases like this it sometudies occurs that one method
shows no significant d1fference while the other brings it
out; if either methodNndicates a definitely significant
diﬁerence, its testimony cannot be ignored, even if
the other methéd-fails to show the effect. When no
correspondence exists between the members of one
series and &hose of the other, the second methed only
is ava1la.~b{e
Q\ 25. Regression Coefficients

o) * The methods of this chapter are applicable not

\ ), only to mean values, in the restricted sense of the
word, but to the very wide class of statistics known
as regression coefficients. The idea of regression used
usually to be introduced in connexion with the theory
correlation, but it is in reality a more general,
and a simpler idea; moreover, the regression co-
efficients are of interest and scientific importance in
many classes of data where the correlation coefficient,
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if used at all, is an artificial concept of no real utility.
The following qualitative discussion is intended to
familiarise the student with the concept of regression,
and to prepare the way for the accurate treatment of
numerical examples.

It is a commonplace that the height of a child
depends on his age, although, knowing his age, we\\"
cannot accurately calculate his height. At each age
the heights are scattered over a considerable rang%: i
a frequency distribution characteristic of that age ;
any feature of this distribution, such as,xﬂ% mean,
will be a continuous function of age, /Fhe function
which represents the mean height at any: age is termed
the regression function of height ofage ; it is repre-
sented graphically by a regressioficurve, or regression
line. In relation to such a‘fegression line age is
termed the independent’;:\}‘éi‘r’iate, and Aeight the

~

dependent variate.

The two variates bear very different relations to the
regression line. .If\\errors occur in the heights, this
will not influégte”'the regression of height on age,
provided that\at all ages positive and negative errors
are equally)frequent, so that they balance in the
average}\”" On the contrary, errors in age will in
gengtal alter the regression of height on age, so that
frem' a record with ages subject to error, or classified
~ift broad age groups, we should not obtain the true
"ﬁhysical relationship between mean height and age.
A second difference should also be noted : the
regression function does not depend on the frequency
distribution of the independent variate, so that a true
regression line may be obtained even when the age
groups are arbitrarily selected, as when an investiga-
tion deals with children of ““school age.” On the
' K
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other hand, a selection of the dependent variate may
change the regression line altogether,

It is clear from these two instances that the
regression of height on age is quite different from the
regression of age on height ; and that one may have a
definite physical meaning in cases in which the other
has only the conventional meaning given to it by
mathematical definition. In certain cases both wdghes-
sions are of equal standing ; thus, if we exfpress in
terms of the height of the father the avefage adult
height of sons of fathers of a given heigljg(,:})bservation
shows that each additional inch of thieMathers’ height
corresponds to about half an inch in)the mean height
of the sons. Equally, if we také the mean height of
the fathers of sons of a given Iréig‘ht, we find that each
additional inch of the sons’\height corresponds to half
an inch in the mean height'of the fathers. No selection
has been exercised inQthe heights either of fathers
or of sons; each vdiiate is distributed normally, and
the aggregate of (airs of values forms a normal cor-
relation surfaceN” Both regression lines are straight,
and it is consequently possible to express the facts of
regressioqfﬁx' the simple rules stated above, _

When'the regression line with which we are con-
cerned is straight, or, in other words, when the regres-
Sicm function is linear, the specification of regression

~\is'much simplified, for in addition to the general means
we have only to state the ratio which the increment of
the mean of the dependent variate bears to the corre-
sponding increment of the independent variate. Such
ratios are termed regression coefficients. The regres-
sion function takes the form

Y = g+-b6(x—a),
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where 6 is the regression coefficient of ¥ on z,
and Y is the predicted value of y for each value of z.
The physical dimensions of the regression coefhcient
depend on those of the variates; thus, over an age
range in which growth is uniform we might express
the regression of height on age in inches per annum, in
fact as an average growth rate, while the regression of "\
father’s height on son’s height is half an inch per inch,)
or simply }. Regression coefficients may, of codrse,”
be positive or negative. N\

Curved regression lines are of common occ;ﬁ%‘ehce ;
in such cases we may have to use such)&)regression
function as O

Y = at+dxt et dx3 )"

&

in which all four coefficients of ﬁh;‘fegression function
may, by an extended use of phé‘térm, be called regres-
sion coefficients. More eldborate functions of x may
be used, but their practital employment offers diffi-
culties in cases wherelwe lack theoretical guidance in
choosing the form(of the regression function, and at
present the simple’ power series (or polynomial in x)
is alone in, freguent use. By far the most important
case in staiistical practice is the straight regression
line. _ (™
. \}6 Sampling Errors of Regression Coefficients
. "The linear regression formula contains two para-

SUieters which are to be estimated from the data.
If we use the form

Y = g} ¥x—1x}
then the value chosen for @ will be simply the mean, 7,

of the observed values of the dependent variate. This
ensures that the sum of the residuals y—Y shall be
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zero, for the sum of the values of 4(x—%) must be
zero, whatever may be the value of 4.

The value given to 4, our estimate of the regression
coefficient of ¥ on z, is obtained from the sum of the
products of # and . Just as with a single variate
we estimate the variance from the sum of squares, figst
by deducting #i2, so as to obtain the sum of. the
squares of deviations from the mean, in accardaﬁce
with the formula, A

S{(w—&)H = S —nwt, o
and then dividing by (#—1) to obtaiit :;n estimate of
the variance; so with any two vatiates x and p, we
may obtain the sum of the produ¢ts’of deviations from
the means by deducting 'm?_y' ;"\fe\i'

S{(x— x)(y—yJ} S(ay)—nag.
The mean product of twb wariates, thus measured from
their means, is termed® ‘their covariance, and, just as in
the case of the variance of a single variate, we estimate
its value by di%iding the sum of products by #—1.
The sum of*products from which the covariance is
estimatéda;iagr evidently be written equally in the forms

27 Ste—-mh Sly—7)-

_ @ur estimate of 4 is simply the ratio of the
,,g’oj(fariance of the two variates, to the variance of the
\'\; independent variate ; or, since we may ignore the factor
(n—1) which appears in both terms of the ratio, our
method of estimation may be expressed by the formula

§ . D E—E);

S{x—-%)%
We thus have estimates calculable from the observa-

tions, of the two parameters, needed to specify the
straight line. The true regression formula, which we
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should obtain from an infinity of observations, may be

represented by
Y = atBfx—%)

and the differences ¢ —a, 4— B, are the errors of random
sampling of our statistics.

To ascertain the magnitude of the sampling errors
to which they are subject consider a population of
samples having the same values for z. The variations.)
from sample to sample in our statistics will be due only
to the fact that for a given value of x the valugsiof ¥
in the population sampled are not all equals” If o
represent the variance of ¥ for a given value’of z, then
clearly the error of & is merely the)mean of n'
independent errors each having a vafance ¢*, so that
the variance of @ is o%/#’. The\second statistic & is
also a linear function of the values, y, and its sampling
variance may be obtained byzan extension of the same
reasoning. In this caseeach deviation of y from the
true regression formula is multiplied by z—%; the
variance of the produet is therefore o*(x—%)?, and that
of the sum of thé})roducts, which is the numerator of
the expression\br 4, must be

p \u\ . o3S5(x— i3t

N

T&ﬁd b we divide this numerator by S{(x—£)*} so
thas";?he variance of & is found by dividing the variance
&0 the numerator by S{(x—%)%) which gives us the
expression

o

_T
S{x—i)?

for the sampling variance of the statistic b,
It will be noticed that the value stated for the
sampling variance of 2 is not merely the sampling
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variance of our estimate of the mean of y, but of our
estimate of the mean of y for a given value of z, this
value being chosen at, or near to, the mean of our
sample, and supposed invariable from sample to
sample. The distinction, which at first sight appears
somewhat subtle, 1s worth bearing in mind. Fronya
set of measurements of school children we may make
estimates of the mean stature at age ten, ancl.‘oﬁ’the
mean stature of the school, and these estlma‘tes will
be equal if the mean age of the school\\chlldren 1s
exactly ten. Nevertheless, the former, il usually be
the more accurate estimate, for it elitiiffates the varia-
tion in mean school age, which will &b’ubtiess contribute
somewhat to the variation in mean school stature.

In order to test the significance of the difference
between 4, and any hypottietical value, 8, to which it
is to be compared, we must estimate the value of o2 ;
the best estimate for, the purpose is

s
¢ *\\;’2 — P

S

found by s.ummmg the squares of the deviations of ¥

from 1ts\calculated value Y, and d1v1d1ng by (' —2).

The\rea.son the divisor is (»'—2) is that from the

z\values of ¥ two statistics have already been calcu-

~ “{a.ted which enter into the formula for Y, consequently

V) the group of differences, y—Y, represent in reality
only ' —2 degrees of freedom.

When #' is small, the estimate of s% obtained above
is somewhat uncertain, and in comparing the difference
b~ B with its standard error, in order to test its signifi-
cance we shall have to use * Student’s 7’ method, with
n =n' —2. When #' is large the #distribution tends
to normality. The value of # with which the table
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must be entered is found by dividing (—B) by its
standard error as estimated, and is therefore,

,_ 6—BVSE—3}
5

Similarly, to test the significance of the difference

between @ and any hypothetical value a, the table is

entered with O

a—a)yVe'
t:(————o;) , m=n—2;

this test for the significance of g will be moriég%si’tive
than that ignoring the regression, if the Variation in
y is to any considerable extent expressible in terms
of that of x, for the value of;‘z})btained from
the regression line will then bglsmaller than that
obtained from the original graup of observations.
On the other hand, 1 degr@p’hf freedom is always
lost, so that if & is small,” no greater precision 1s
obtained. QO ¥

In general, wh@:{@he mean value of the dependent
variate is estimateéd for values other than the mean
of the independent variate, we need, as was shown
by Working\and Hotelling, to know the sampling
variance.6fthe estimate

O _ .
O Y = at+b(x—%).

Smce the sampling errors of 2 and / are independent,

is is given by
N V(@) (x—£)*V(),

where V(2) and V{$) stand for the sampling variances
of our estimates @ and &.
We have, therefore,
(x—%)% )

1
Vo0 =+ sy
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where o2 is the true variance of ¥ for given . For
values of x near the mean, that is, where (x—%) is
small, this variance will not greatly exceed that at
the mean of the observed sample, but for wvalues
more remote from the centre of our experience the
precision of the estimate is naturally lower, and the
second component of error, due to the estimatic{(
of 4, becomes predominant. A

Ex. 22. Effect of nitrogenous fertilisers ineopatn-
taining yield—The yields of dressed grain jn\bushels
per acre shown in Table 29 were obtaingdy from two
plots on Broadbalk wheat field during thirty years ; the
only difference in manurial treatment Wés that “ga”
received nitrate of soda, while *“ 7 §7teceived an equi-
valent quantity of nitrogen as\Sulphate of ammonia.
In the course of the experim’e\nﬁ;plot “9a’ appears to
be gaining in yield on plgt¥* 7 4. Is this apparent
gain significant ? N

A great part of the variation in yield from year to
year is evidently ,m}ﬁilar in the two plots; in conse-
quence, the sefids of differences will give the clearer
result. In opn€respect these data are especially simple,
for the thixty values of the independent variate form
a series/gvith equal intervals between the successive
values,with only one value of the dependent variate
cortésponding to each. In such cases the work is
,.\’s:h:[ipliﬁed- by using the formula
W S(r— 5 = gy (w2— 1),
where #’ is the number of terms, or 30 in this case.

To evaluate 4 it is necessary to calculate the sum

of products
S{y(x—x)};

which bears the same relation to the covariance of two
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variates as does the sum of squares to the vanance
of a single variate ; this may be done in several ways.

TABLE 29

Havest| o, 1 75 |9a—78.

1855 | 2962|3300 —338
1856 | 3238|3691} —4°53

\

4881 | 35744 | 26013 9731
N|/1882 | 3181 |34°75| —204
| 1883 | 4338|3631y +ve7
1884 40'44 ' 3775 | 269

1857 |43'75|44'84 | —¥109 A\
1858 | 37°56 | 3804 | —138 A\ 3
1859 | 30-001{34:66 | —4°66 ( ).‘.\. |
1860 | 32062 |2772| “+4'90 ; 12 (AN L
1861 gs-*zs sao4| —rig|SE—D =" 2247°5
1862 {4344 3588} 756 o\

1863 | 55'56 | 5366 -+rgo (b = 20679 ,
1864 | 510614578 | +528 NS !
1865 144'06 |40'22| 4384 (S(F—5)? = 102056
1866 | 32750 | 20791 | —+2°59 ":jq‘é%‘S(x~:E)2= 159'97
1867 |29-13| 22716 | +6097| M

1868 | 47-81 | 39°19| +862 0N S{y—Y)? = 86o'59
1869 | 3900 | 28-25 | +10 754"

1870 | 4550|4137 | AR 5= 3074

1871 | 3444 | 22°31 | AT213

1842 | 4069 | 29'08 ’\+f1-63 $25(x—£)? = -013675
1873 | 35781 | 22375 pH13'06

1874 | 38'19| 3056 | —1°37 = (-11694)%
1875 | 30 59N ¥6' 63 +3'87

1876 33;3{“'25.50 +7.81 § = 2v2814 i
1877 | gu:ﬁ.z 1912 | +21°00 .
1878, 3719 | 3219 +500 n = 28

1870\ 2104 | 17725 | +4769

880" | 34-06| 3431 ¢ —25

‘Mean 3750|3303 | 447

We may multiply the successive values of y by
27, . . . +27, +29, add, and divide by 2.

—29,
This
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~is the direct method suggested by the formula. The
same result is obtained by multiplying 1, 2, . . ., 30
n+1
2

and subtracting 15% ( ) times the sum of values

of y; the latter method may be conveniently carried
out by successive addition. Starting from the botto
of the column, the successive sums 269, 9-76, 6825 ...
are written down, each being found by addmg«’l new
value of y to the total ah‘eady accumulated ;\ the sum
of the new column, less 15% times thexsﬁm of the
previous column, will be the value requ\h‘ed In this
case we find the value 599-615, and dividing by 22475,
the value of & is found to be 26&7“9 The yield of
plot “ g a” thus appears to héye gained on that of
““7 57 at a rate somewhat Q\fer a quarter of a bushel
per acre per annum. R

To estimate the standard error of 4, we require the
value of the sum of squares of the deviations, or
residuals, from thé\regressmn formula,

¢ N\
T s

knowing the. value of 4, it is easy to calculate the thirty
values of\Y from the formula

\” Y =j+x—5)k;

m:ﬁ)r the first value, x—% = —14'5, and the remaining
\‘:Qalues of Y may be found in succession by adding
4 each time. By subtracting each value of Y from the
corresponding v, squaring, and adding, the required
quantity may be calculated dn‘ectly This method is
laborious, and it is preferable in practice to utilise the
algebraical fact that

S(y— V)t = S(y—Fp—8S(x— )
= S(4¥—n'P2—52S(x— )2
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The work then consists in squaring the values of y and
adding, then subtracting the two quantities, which can
be directly calculated from the mean value of ¥ and
the value of 4. In using this shortened method it
should be noted that small errors in § and 4 may intro-
duce considerable errors in the result, so that it is

necessary to be sure that these are calculated accurately
to as many significant figures as are needed in the'.

quantities to be subtracted. Errors of arithméue
which would have little effect in the first method
may altogether vitiate the results if the secon ‘grethod
is used. The subsequent work in calgdlating the
standard error of 4 may best be followedyh'the scheme
given beside the table of data ; the estimated standard
error is -1169, so that in testing)the hypothesis that
B = o, that is that plot “9 a .shas not been gaining
on plot “74,” we divide & by this quantity and
find # — 2+2814. Since s was found from 28 degrees of
freedom 7 = 28, and Q}e result of # shows that P 1s
between 02 and 05\

The result must be judged significant, though
barely so; inyiew of the data we cannot ignore the
possibility that’on this field, and in conjunction with
the other.filanures used, nitrate of soda has conserved
the festility better than sulphate of ammonia; the
data ‘do not, however, demonstrate this point beyond
pésibility of doubt.

) The standard error of #, calculated from these
data, is 1°012, so that there can be no doubt that the
difference in mean yields is significant; if we had
tested the significance of the mean, without regard to
the order of the values, that is calculating * by
dividing 1020°56 by 29, the standard error would have
been 1-083. The value of & was therefore high enough



140 STATISTICAL METHODS [§ 2671

to. have reduced the standard error. This suggests
the possibility that if we had fitted a more complex
regression line to the data the probable errors would
be further reduced to an extent which would put the
significance of & beyond doubt. We shall deal later
with the fitting of curved regression lines to this type
of data. ' ‘&

26-1. The Comparison of Regression Coeﬁicien?g(:",}

Just as the method of comparison of means is
applicable when the samples are of -differgagt\sfzes, if
we obtain an estimate of the error by coinbining the
sums of squares derived from theNtwo different
samples, so we may compare regression coefficients
when the series. of values of thesindependent variate
are not identical ; or if they arefidentical we can ignore
the fact in comparing the regression coefficients.

Ex. 23. Comparison efvrelative growth rate of fwo
cultures of an alga—~Table 30 shows the logarithm
(to the base 10) of thesvolumes occupied by algal cells
on successive da.g('s;f in parallel cultures, each taken
over a period>during swhich the relative growth rate
was apprexainately constant. In culture A nine
values ageavailable, and in culture B eight (Dr
M. Buistol-Roach’s data).

_The method of finding Sy(x—%) by summation is
shown in the second pair of columns: the original
_yvalues are added up from the bottom, giving successive
totals from 6:087 to 43426 ; the final value should, of
course, tally with the total below the original values.
From the sum of the column of totals is subtracted the
sutn of the original values multiplied by g for A and
by 4% for B. The differences are Sy(x—%); these
must be divided by the respective values of S(x—#)?,



§26-1] SIGNIFICANCE OF MEANS, ETC. 141

namely, 60 and 42, to give the values of 4, measuring
the relative growth rates of the two cultures. To test
if the difference is significant we calculate in the two
cases 5(3%), and subtract successively the product of
the mean with the total, and the product of 4 with
S¢(x—%); this process leaves the two values of
S(y—Y)?, which are added as shown in the table, and

\..x

TABLE 30

- \ “.
ox \
Log Values. Summation Yalues. W
A B. A B. J \ Y
|- —~ A
3562 | 3 538 43426 38%2“3 [Bly—V)2, A 05080
| 3823 4 3828 39834 »” B 07563
4774 | 4'349 36-011 39992
4 534 | 4833 31-837 | \26°043 as® 12652
4955 4971 2% 303 .: L %1810 52 -oogy32
5-163 | 5-20% 22-3 16-809 sif6o  -opo1b2z
5495 5566 17.184’ 11-Gaz s2f42  -ooo231%
5602 6036 sy 6036
6-087 . N\ 6087 0003930
Total | 43426 | 38-35% ,\“x 235718 | 187160 | Standard error -o1085
Mean | 4-8251 | 47947 | %\ 2177130 | 1720617 &—5 0366
U By(x—z) 18588 14'549 ¢ 1844
NV s -3008 -3464 713
b '\s.

“‘s.
S

the su%l divided by 7, to give s2. The value of » is
found by adding the 7 degrees of freedom from series
Ao the 6 degrees from series B, and is therefore 13.
\Estimates of the wvariance of the two regression
coefficients are obtained by dividing s* by 60 and 42,
and that of the variance of their difference is the sum
of these. Taking the square root we find the standard
error to be 01985, and # = 1-844. The difference
between the regression coeffictents, though relatively
large, cannot be regarded as significant. There is
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not sufficient evidence to assert that culture B was
growing more rapidly than culture A.

262. The Ratio of Means and Regression Coefficients

Ex. 23:1. When pairs of observations are avail-
able, such as those shown in Table 27 {(page 121{(
showing as these do a decidedly significant differenc
between the means, we have gained some 1dea.~éf ‘the
magnitude of the true difference between the means,
which we may expect to lie between limits gﬁ%eﬁ by the
observed value plus or minus an appropf}ate multiple
of its standard error. This multiple spec1ﬁes the level
of significance chosen and, in a sf;n‘se‘ the probability
that the true difference shouldie Detween the limits
assigned. Thus this probability is g3 per cent. if

- we choose as the appropriate'multiplier the 5 per cent.
value of # for the numl)er of degrees of freedom
available, or 2-262 for the 9 degrees of freedom in
that example. N

It may wel ‘e that the difference between the
average effeets of two treatments is of less intrinsic
interest than the ratio of their effects, for it may be
that twe drugs have a constant potency ratio, while
‘thesdifférence between the average effects of chosen
dq&és depends greatly on the experlmental material
~used, on the conditions of the experiment, and on

“the actual amount of the dose. It is useful, therefore,

to be able to assign similar limits for a presumed
constant ratio between the effects in place of those
for a presumed constant difference.

Now, if x and y are the observed effects of treat-
ments A and B in any particular case, and « stands
for the potency of A relative to that of B {or, in other
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words, the weight of B equivalent to unit weight
of A), then we may consider the quantity

2= x—ay

as an observed value, variations of which from case
to case may be estimated from the experimental data,
The arithmetic required is nearly the same as that,
of Example 20, namely the means and sums of\s
squares of the variates x and ¥, with the additxoa {:rf

their sum of products, O
Thus for x we have \»
D
5(#%) 3443 AV
£5(x) 5625
S(x—£) 28° 3‘05 ;
for ¥ \"
S(¥%) > 90737
7y AN 54289
S(ymy)2 N 36:081
and, for the produCt\
5@/) 4311
\ ‘fSO’) 75(x) 17°475
’\ S(r—m}y—) 25°635.
R&I‘l leaving a still undetermined, it is clear that
”\a;“\d‘ 5(z) = 7°3—23"3@
ol
Y S(3—7)? = 28-Bog —2a(25635 )+ ¥ 36-081).

Moreover, the data will show a significant deviation
from the value of « adopted if

2 82> AS(z 7).
10



O

144 STATISTICAL METHODS [§ 262

Taking, for the 5 per cent. point,
t = 2-262, = 5116644,
then the equation for a becomes
303'98740~26-1008(24)—96-7599 = o,
which is satisfied by the values
@ = 46366 and — +4848.

s <\
- It is thus clear that no estimate of the re]gti&
potency of drug A compared with drug B exceeding
“0566, or rather less than two-thirds, is cgrﬁpﬁtible
with the data presented. The fact thaxt\ﬁﬂi“e other
value is negative shows that these data doltiot establish
any positive soporific effect at all for drug A at the
significance level used. It mig%; i fact, have
exerted an antisoporific effe tlnéarly one-half as
potent as the soporific effect’of drug B before the
observed difference in efficady between the two drugs
would be significantly exeseded.

A method very sidular in principle may be used
to find limits fop{the value of the independent
variate at whiclythe regression function attains a
given value, ~0‘r\the value at which two regression
lines mtersect.)

If a;0ahd o, are the true means and 8,, B, the
true ilzlfzé’:l‘iciern:s of regression of two dependent
variagtes, then the point of Intersection is the value of
Mh;(;\unknown, X, satisfying the condition

N +H{X—%)8; = 03 H(X—%5)B,.
Now the sampling variance of
s 41+(X—-:t?1)él—-a2—-—(X—-;Ez)éz
2] I I X~F)? (X—z,)2
%E+E+L§£+L§@L
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where S; and 5, are the sums of squares of deviations
of the independent variate for the two samples, and
s2 is the mean $quare deviation of the dependent
variates from the fitted regression lines. Hence if
we equate

{‘31_“2_‘51-%1 + 2573+ X (4 '“52)}2
to

i |x1

2 — kgl x? [ i '(:'. 3
’{N1+ to s (bﬁS)*X (stz},}?

we shall have a quadratic equation for X pf\\vfiich
the roots are the limiting values possible atthe level
of significance represented by the value AW

Ex. 232, The age at which gzr!&éecome taller
than boys.—Karn (1934) gives \(sJués derived from
measurements of 4007 school chﬂ(ﬁ'en in the borough

of Croydon. R .’j )
Number Mean age _, | Ql\"l’éan Height Ecgression Slx—x)?
N % {years} 4 a (inches) 4 (ins.fyr.} (yr.)t
Roys 1946 I\ESQI\S' 56-004 ‘ 1-60 337894 |
Girls 2061 “y21300 | 56-530 | 2443 382-835 %
4.

The\@féén square deviation from the fitted regres-
sion lmes $2, is

"\ » 8-17915,
Msed on 3991 degrees of freedom. For limits at the
5 per cent. point we may therefore take

= 106
and
532 = 31+421.



146 STATISTICAL METHODS [§ 262

From the remaining data we have, taking x as the
excess of the age over 12 years,

dy—ay—byTy -8y 7, ‘55010
| (h—b9X 85X
I, 1 oy Ty 001163582 s &\
N, + N, * Sy * Sy ) . \\
— (’ﬁ + :-E—z)zX -—-000936405@;()”“
5, "5,
=+ L)xe 00 ‘fﬁo X2,
(51 * Sz) X . 5%7 ( )

. The Quadratic equation for X i’s' therefore

| ('547435JX“+(-49?064)2>\@{\:§66rzz = o,
of which the roots are O

ol ¢
NS
N

T8N 32y
corresponding with aged®
O
10:502and 11674 years,

‘The es'timafe\{s}é}ived from the means and regres-
‘sions given 49 11354 years, much nearer to the
uPper thanto the lower limit. The children were
nearly &lf“measured in their 11th and r12th years,
and thedprecision of the comparison falls considerably
Al\te lower ages, wirh the consequence that the
Avwer limit differs I

\'“> ‘With this number of children a much higher accuracy
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27. The Fitting of Curved Regression Lines

But slight use has been made of the theory of
the fitting of curved regression lines, save in the
limited but most important case when the variability
of the dependent variate is the same for all values

of the independent variate, and is normal for each such,

value. When this is the case a technique has beeiv))

fully worked out for fitting by successive stages, any
line of the form ) \“
ox'\

Y =a+bxtea? L ax? .. y \
we shall give details of the case where the successive
values of x are at equal intervals. Th&ore general
case, when varying numbers of\\¢bservations occur
at different values of z, is best treated by the method
of Section 29-2 ; when the ir,l.tei"vals also are unequal,
the general method of Section 29 is available, using
the powers of x as independent variates.

As it stands the fofor given would be inconvenient
in practice, in thaf the fitting could not be carried
through in succgssive stages. What is required is to
obtain successively the mean of y, an equation linear
in x, an eghation quadratic in ¥, and so on, each
equationbeing obtained from the last by adding a new
term;.ﬂ%is being calculated by carrying a single
process of computation through a new stage. In

N

\ord‘ér to do this we take
Y=A+B§1+C§S+D§s+ LRI

where ¢,, £,, €; shall be functions of x of the 1st, 2nd,
and 3rd degrees, out of which the regression formula
may be built.

These functions of * may be regarded as the
coefficients of the corresponding observations in certain
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comparisons, or components of variation among them.
Thus ¢, 1s always chosen to be x—% ; e.g. if there were
7 observations the values of ¢ would be —3, —2,
—1, 0,1, 2, 3; so that the comparison corresponding
with the 1st degree in x is

6] 31— 2V — Vet Wty T2+ 300 \\\
Again, &, might be taken as the coefﬁciergf;é;jn
the comparison O

@ s34y 3yshoyet iy

~ Here the coefficients are expressible.’a} a quadratic
in x, namely

v

(F—2)f—yq = 612“4»%?2,'

.o ) O .
and it is to be noticed that thé";hm of the coefficients,
and the sum of their produgts with those of ¢, are
both zero,

For the 3rd, 4thand 5th degrees we may use
n turn \\\
(i) ‘_J/1+J’2+ya§3'5’:_}'a+y7 . &(&2—7)/6

(iv) 33’1_7392":‘3’;‘1‘6}’4‘!‘}’5—‘7}’5+3J’7 (761*—6782+72)/12
) TNHALET S st S s Ay et e (1652456 524£,)/60.

Ngt{é}ﬁat the sum of the coefficients is zero in each
casg\§o that each expression is properly a comparison
gmbng the values of y; moreover, the sum of the

~(products of corresponding coefficients in any two
\/ expressions is zero, so that the comparisons made
are properly independent.

In fitting a curve, the expressions in yare evaluated,
each divided by the sum of the squares of its coefficients,
and are then used as multipliers of the corresponding
functions of x in the fitted curve. Thus the sums of
squares of the five expressions above are 28, 84, 6

3
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154, 84. Consequently, the successive terms of the
fitted curve are :—

(—351— 2Ye—Yatrs4- 205+ 3y )€1 28
(531—3¥s—404—3¥sF 5 y(&12—2)/84

(—31Fyotye—ys—ve +y(€P— 78,36
Bri—12tyat6rstys— Tvet 33076, — 676,21 72)/1848
(—ntaye— 35yt 55— 4 Vet v (2165~ 245E, 54 524£,)/ 5040'\\\

The first of these expressmns gives the best ﬁttmg \
straight line. By using the first two terms we, have
the best fitting parabola, the 3rd terms adjust Q 10 the
best fitting cubic, and so on. \

Based on these orthogonal polynotajals, inde-
pendent comparxsons convenient for Qttmg series to
the 5th degree are given so far as #» < }5 in Statistical
{ables. The general formule El.I‘Q{g’lVE:I‘l in editions 3
to 6 of this book, but for hlgher degrees and longer
series it is best to use the™ varithmetical approach
illustrated in the following! sections.

The components are, also expressible in terms of
the successive dmfferen}ses of the series v,. Thus those
given above mlgh{\be written

@ A(?‘;}’&ﬂ‘ 5¥et6¥5+ 60t 5 ¥5-+3ye)
(iD) AXSyy + 10y, + 12y5+ 10y, + 5 95)
(iii) ~ D8 (yyt2yetays )
GV) NS AGy+5vat3y8)

(V)\ A3 +2)

where Ay, stands for y,—, and so on. In place of
\the sum of the squares of the coefficients of the
explicit formule, we should then use the square of
the sum of the coefficients of the differences of the
appropriate degree, divided by

w(n?—1) . . . (#P—2Y

(2.6)(6.10) . . . {{4r—2)(ar+2)}
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for the term of degree ». This device of using
differences sometimes saves an immense amount of
labour, since the differences are often smaller numbers
than those from which they are derived, and fewer
of them are to be used. The sign of the coefficients
also is always positive. Coefficients of such expansions,
in differences may be found for any degree by startifig

with unity, and multiplying successively by (&)
(r+)m—r—1) (r+2)n—r—2) R O

{(n—1) 2m—2) 'X',\‘\"‘.

a method which may be simply illustrdted by con-
structing in this way the formula siven above for
%=7,7=4; thence by differencifig’ four times con-
struct the actual coefficients of \Ehe fourth component.
Although, for arithmetical putposes, it is convenient
to leave these expressions indeterminate in respect of
constant factors, so thatyen removing any common
factor, or clearing fradtions, the expression may be
used in its simplest férm, algebraically, it is convenient
to introduce the.ﬁg}wention that in the polynomials
the coefficient ofthe leading term is unity, Thus &,
above is taken'to be £ —7¢,, with values 6 times the
coefficientSefthe expression used. With thisconvention,
the sum ©f the squares of the coefficients is found to be

.@fﬁﬁ—l) R Gt I (n4-#) »l4
“\,jf’. 1215 . . . (16—4/7%) T (e—r=1)l - (2 (2L 1)l

\~so that the process of fitting may now be represented
by the equations

f

- I
y - ?‘;i' S(J’),

!

i S8,

A
B
C

i

180
7' (n'i—1) (n’z____?)_s(yfﬁ)l
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where, in general, the coefficient of the term of the
rth degree is

(2r)l(27r41)!
Y% w2 —1) . . . (") S(yén.

As each term is fitted the regression line approaches
more nearly to the observed values, and the sum of the _
squares of the deviations "\

S(y—Y)? O
1s diminished. [t is desirable to be able to calcula,te
this quantity, without evaluating the actual altes of
Y at each point of the series; this can b@ one by
subtracting from S{4%) the successive quantities

n'A2 n (?z _ I) Be 7 (” _ I) @‘2_4) Cz
’ 12 ’ \1\80
or more simply ¢
AS(y), BS(rEpnC5(véa),

and so on. These quantﬂ:ies represent the reduction
which the sum of the squares of the residuals suffers
each time the regresion curve is fitted to a higher
degree ; and enable-ts value to be calculated at any
stage by a merp.extension of the process already used
in the precedkng examples To obtain an estimate, s2,
of the resLanl variance, we divide by 7z, the number of
degre :@f’freedom left after fitting, which is found
from#" by subtracting from it the number of constants
in. (he regression formula. Thus, if a straight line has
‘Been fitted, # = #'—2; while if a curve of the sth
degree has been fitted, z = 2’ —6.

28. The Arithmetical Procedure of Fitting

The main arithmetical labour of fitting curved
regression lines to data of this type may be reduced to
a repetition of the process of summation illustrated in
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Ex. 23. We shall assume that the values of ¥ are
written down in a column in order of increasing values
of x, and that at each stage the summation is com.
menced at the top of the column (not at the bottom, as
in that example). The sums of the successive columns
will be denoted by S,, S,, ... When these values ha.VQ\
been obtained, each is divided by an appropriate divfisg},
which depends only on #, giving us a new sexfes’of

quantities @, &, ¢, ., . . according to the "f:t‘a;l"ltfwing
equations 7\
&= 1551 == 5() = 7,5
. - N
o n!(n’_é— I) 2’ N\ “
£ = 123 \\\; S
At 2) R
and so on. X

From these a thirdSeries of quantities &', &, ¢,

- are obtained bylequations independent of #', of
which we give bel&w the first six, which are enough to
carry the procg%\\)f fitting up to the sth degree :

el&a,
ot = a—b,
g':}" ¢ =aq—3b42¢,
§§ &' = a—6b+10c— 8,
"\. ¢ = g— 106--306— 384 - 14e,
~\J f=a—1564+700— 1404+ 126e— 42f.

N/
The rule for the formation of the coefficients is to
multiply successively by
oD =1 (r2) r—2) (r+3)
rz '’ 2.3 ! 3.4

and so on till the series terminates.
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These new quantities are proportional to the
required coefficients of the regression equation, and
need only be divided by a second group of divisors to
give the actual values. The equations are

A=g', B=_%_ 4 X
#w—I \\
30 140 ¢
O e — D= ; —d
CEDICES =D —2) o =™
630 2772

e e RN s i ok

% 3
N/

the numerical part of the factor being «

(241! ’:,\\“‘
2 v
(?’I) \\\‘\\:
for the term of degree #. D
If an equation of degree’s has been fitted, the
estimate of the standard, _érrors of the coefficients are

all based upon the samé Value of 52, z.e.

N
. 1 [, n'(n'*—1) )
sz_n'—r-l -t%y?)—n Ag_TBg_ e

from which ghe’estimated standard error of any co-
efficient, s,t{ciﬁ'as that of ¢, is obtained by dividing by

'éi(”‘s;}g)——- — 2 (wP—1) L (" —p?)
SN @) ep )
»aﬁﬁwtaking out the square root. The number of
legrees of freedom upon which the estimate is based
is (#'—»—1), and this must be equated to 7 in using
the Table of £
A suitable example for using this method may be
obtained by fitting the values of Ex. 22 (p: 136) with
a curve of the 2nd or 3rd degree.
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28-1, The Calculation of the Polynomial Values

The methods of the preceding sections provide an
analysis of a series into the components which can
be represented by polynomial terms of any required
degree, and the remainder which cannot be so repre-
sented. For much work of this kind 1t is desirable te
carry out this analysis without the labour of calcula.tl}rg
the polynomial values, Y, at each point of thgse‘m&s
Sometimes, however, it 1s desirable to have these
values, either to construct a graph, to e.gamme the
deviations in regions of special interest,“or because
doing so provides a completely satisfactory check
upon the results calculated. \\,

The very tedious procedud®,“of calculating the
individual values of ¢, and ftosi them, and the calcn-
lated coefficients, forming, the individual values of the
polynom:al may be av01ded by building up the whole
series, by a continuows® process, from its differences.
The process is obyigus when a straight line is fitted.
For the termindl)value, and the constant difference
between sucgeéswe values, we take
: ¢ . Yy =a'+34,

o AY, = —-2 &,
v —
g§buzld up all the other values of Y by continuous
ition of the constant difference. The method is,

“however, applicable to polynomials of high order, and

in such cases appears to save more than three-quarters
of the labour of calculation. For curves of the 2nd
degree the equations are :
' Yy =a'+38 452,
AY; = — +3¢7,

6o

AR e
1 (n’—l)(n’—z)c
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Starting with the terminal value AY,, the series of
first differences is built up by successive addition of the
constant second difference A?Y, ; then starting from
Y,, and adding successively the first differences, the
series of values of Y is built up in turn.

The formule for any degree are constructed usmg
the factors, with alternate positive and negative 51gns

1,

W1 =2 WD) —2) (7 =3)"

together with expressions ina, &, ¢, . Wﬁ‘h ‘the
same coefficients, as given in Table 30°2, wha\isever the
degree of the curve.

The arithmetical procedure, which/ednsists almost
entn‘ely of successive addition, may~be ilustrated on
the series of Ex. 22. Table 30 r shows on the left the

.

N

N

—2.3 3.4-5 —4.5.6.7

TABLE ‘30. 1
| Observed 7 Poly- | 15t znd ard
Values. x5t Suan. end Sue. :fn:LSum. {}:ﬂg{ ‘Diﬂ'err:ncm Difference. |Difference.
o
'\
_;:25 r17-88 366‘77 4440°58 586 739 | —+1280
+g-31 12719 105706 5528-54 400 871 | —-1320
~2-04 | 12425 |(N2f221 | 674075 | 398 | 1008 | —-1361
+707 131-32 71343753 8o84-28 284 | 11148 | —'1402

+-2-69 134‘0% /147754 | 956182 1-544 | 1:2919 | —-14423 | ‘004061

13401 475 o561-82 | 3016%+21 |134-00
4467000 | 477505 |  1'927786 | ©'057165
4'4670?& ‘B:289495 | —1-200431 | — 105995

last five lines of the summations needed to fit a curve
of the 3rd degree, and on the right the first five lines
of the summations by which the polynomial values
are built up.

Below the first four columns are shown the values
of @, . . ., & derived directly from the totals, and of
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@, ... d derived from them. If we want the
values of Y to two decimal places, it will be as well to
calculate Y, to three places, and each difference to
one more place than the last, discarding one place for
the subsequent differences of each series. With this
in view six decimal places will be sufficient for.
¢, . . &  Any further degree of accuracy required®
may be obtained merely by retaining additional dignts.
The sum of the column of polynomial values,Gvhich
must tally with that of those observed, pr@f’ides an
excellent check of the latter parts of the Procedure,
but not of the correctness of the initial §ummations.
TABLE 302 ':'{\\"'

COEFFICIENTS OF &, &, ¢/, . . .IN T E/RERMINAL VALUES oF Y
AND ITS DIFFERtENEES

3 5 709 11 Wy3 15 17 19 21
I 5 14 30 55,079r 140 204 285 38c
1 727 '3?."% 182 378 714 1284 207G

I 9 4 156 450 II22 2508 5148

N 11 65 275 935 2717 jooy

e I3 90 442 1729 5733

I

«\~ I X5 119 665 2940

\ 1 17 152 052

W\ 1 19 189
A/ 1 21
O :

Thiecoefficients used in this method in the expres-
mqr;\?br Yy, AY,, A%Y,, . .. in terms of &, 8, ¢, ...
ate given in Table 30-2 up to the roth degree.

\
\/ :

29. Regression with several Independent Variates

It frequently happens that the data enable us to
express the average value of the dependent variate y,
in terms of a number of different independent variates
%1, %y - . . %, Por example, the rainfall at any
point within a district may be recorded at g number,
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of stations for which the longitude, latitude, and alti-
tude are all known. If all of these three variates
influence the rainfall, it may be required to ascertain
the average effect of each separately. In speaking
of longltude, latitude, and altitude as mdependent
variates, all that is implied is that it is in terms of
them that the average rainfall is to be expressed; it \\
is not implied that these variates vary mciepnf:ndentlyJ \
in the sense that they are uncorrelated. On the €on-"
trary, it may well happen that the more s ut‘herly
stations lie on the whole more to the west thafr do the
more northerly stations, so that for the statzons avail-
able longitude measured to the west lay be nega-
tively correlated with latitude measutéd to the north.
If, then, rainfall increased towthe west but was
mdependent of latitude, we should obtain, merely by
comparing the rainfall reco;'ded‘ at dlfferent latitudes,
a fictitious regression mdw&tmg that rain decreased
towards the north. What' we require is an equation,
taking account of all\}hree variates at each station,
and agreeing as {geatly as possible with the values
recorded ; this gs,called a partial regression equation,
and its coeffielents are known as partial regression
coefficientspe’

To \iﬁﬁplify the algebra we shall suppose that
¥, %y, xg\, 3, are all measured from their mean values,
an.d\tha.t we are seekmg a formula of the form

\ 4 = 51x1—{—53x2+é3x3.
If S stands for summation over all the sets of observa-
tions we construct the three equations

5,50z, 5 4-825(x3x9) +65(x15) = S(ay v},

64S(aryxg) +25(29%5) +635(257) = S(x3),
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of which the nine coefficients are obtained from the
data either by direct multiplication and addition, or,
if the data are numerous, by constructing correlation
tables for each of the six pairs of variates. The three
simultaneous equations for &4, 4,, and bs are solved in
the ordinary way ; first 4, is eliminated from the ﬁrs{
and third, and from the second and third equatipx;?,
leaving two equations for 4, and 4, ; elimina}i,ﬁ'gxég
from these, 4, is found, and thence by substitution,
&y and 4. o AN

It frequently happens that, for thelskme set of
values of the independent variates, \itMs desired to
examine the regressions for more thah.éne set of values
of the dependent variate ; as, of\éxample, if for the
same set of rainfall stations wehad data for several
different months or years. «\In such cases it is pre-
ferable to avoid solvingthe simultaneous equations
afresh on each occasibm, but to obtain a simpler
formula which may,&e applied to each new case.

This may be dorie by solving once and for all the
three sets, each consisting of three simultaneous
equations : .\

AN/
615({1?) +625(x1x2) —I—-é:;S(xlxa) =1, a, Q,
\éls(xlxa) “’_525(1'22) —]-(535(1‘2:53) == O, I, O,
B8 0S5 +4S@) =0, o, 14

\'\;‘&}\ie three solutions of these three sets of equations may
be written
by =cny erg, eg,
by = 14, 22, Coa,

by = ¢y, €azy €a3.

Once the six values of ¢ are known, then the partial
regression coefficients may be obtained in any particular
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case merely by calculating S(z14), S(%), S(x4%) and
substituting in the formulze,

b = 5115(351}') Fe1a5(x, ) +e135(x3 ),

by == 5125(2713’) +€22S(xzy) +€235(13}’),
b3 = ¢535(o1 ) FeaaS(x, ) +casS(x3).

N

. . ‘N
The ¢-values, which are known as the covariance N

matrix, also serve to determine the precision of the”)

regression co-efficients, so that this indirect ‘methodvof
obtaining them is generally to be recommende{i?".

‘The method of partial regression is of ¥ery wide
application. It is worth noting thatthe’ different
independent variates may be relatedNin any way ;
for example, if we desired to expre§s“the rainfall as
a linear function of the latitudePand longitude, and
as a quadratic function of thé, altitude, the square
of the altitude would be intreduced as a fourth inde-
pendent variate, without.in any way disturbing the
process outlined above{save in such points as that
S(xyx,) = S{x?) wou\l'a\be calculated directly from the
distribution of altitude.

The analysisif)f sequences, exhibited in Section 27
and 28 by means of orthogonal polynomials, could
therefore altérnatively have been carried out by the
multipleNegression method. In the case specially
treatedy in which we have a simple sequence of
obgé?:ifations of a dependent variate, one for each of a
seples of equally spaced values of the independent
variate, as in annual returns of economic and socio-
logical data, the use of orthogonal polynomials presents
manifest advantages. When, however, the number of
observations is variable, or the intervals are not equally
spaced, the method of orthogonal polynomials, which
can be generalised to cover such cases, is artificial, and
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less direct than the treatment of the data by multiple
regression. T he equations of multiple regression are
moreover equally applicable to regression equations
involving not merely powers, but other functions such
as logarithms, exponentials or trigonometric functions
of the independent variate. '

In estimating the sampling errors of partial
regression coefficients we require to know how nearly
our calculated value, Y, has reproduced the gbsérved
values of ¥ ; as in previous cases, the sum of(he'squares
of (y—Y) may be calculated by differeaéas, for, with

three variates, D
£ ’\ o
S(y—Y)? = 8(y%)—6;S(2 )& S(x‘a’y)—éas (#3)-

1f we had ' sets of observazmns, and p independent
variates, we should therefo,re first calculate

52 = —',——"—:-'—— S(y_Y)2
and to test if & d,lffered significantly from any hypo—
thetical value, ﬁl, e should calculate
.C\..' ’ £ by~ Bl
S, sVey _
entering. cthe Table of ¢ with 7 = »' — p—1.
Jn the practical use of a number of variates it is
convement to use cards, on each of which is entered the
\ Yalues of the several variates which may be reqmred
By sorting these cards in suitable grouping units with
respect to any two variates the corresponding correla-
tion table may be constructed with little risk of eryor,
and thence the necessary sums of squares and products
obtained.
Ex. 24. Dependence of mmfzz!] on position and
altitude—The situations of g7 rainfall stations in
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Hertfordshire have a mean longitude 12’4 W., a
mean latitude 51° 48’5 N., and a mean altitude 302
feet. Taking as units two minutes of longitude, one
minute of latitude, and twenty feet of altitude, the
following values of the sums of squares and products
of deviations from the mean were obtained :

N\
S(x,%) = 19341, S(eay) = F119°6, " N
S5(x,%) = 283g-3, S{xgxy) = +g24°1, )
S(xy%) = 17508, S(xyx9) = —772.2. : O

To find the multlphers suitable for any pq‘r\ncular
" set of weather data from these stations, ﬁrs‘t\SoIve the

)
equations y

1934°1 ¢yy— 772°2 €19+ 924 1{\}1:; =1
—772°2 ¢, +28895 ¢ &{3\'6 £13 =0
+924'1 3+ 1196 612—]-3\ 508 ¢13 = 0;

using the last equation to elzml‘nate ¢ from the first
two, we have O
2532°3 "'11“'I4(2 5 €19 =1"7508

—1462% 51\}}-5044 6 ¢4 =0;

e 2\J

from these ehmmﬁ‘{é t19, Obtaining

\/ 10,635 5 3 = §-8321;
whence ,'\:“"

351 :,\\QS@ESOM, €1z = '00024075, €13 == —'00045477,

o\M . . . .
thed&st two being obtained successively by substitution.
“\\ince the corre5pond1ng equations for ¢, ey, 633
\i‘iﬁ'er only in changes in the right-hand member, we
can at once write down
==1402"5 1550446 95 = 17508 ;
whence, substituting for ¢,, the value already obtained,

Gap =% "00041686, ¢y = —000IGL35;
: M
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finally, to obtain ¢35 we have only to substitute in the
equation
' 024'T £15+119'6 £33F1750°8 £g5 =1,
giving
_ £49 ='00082183,
It is usually worth while, to facilitate the detection
of small errors by checking, to retain, as above, qné\\
more decimal place than the data warrant. R\
The partial regression of any particular weather
data on these three variates can now be f uitd with
little Jabour. In January 1922 the mmean rainfall
recorded at these stations was 3:87 inches, and the
sums of products of deviations withsthtse of the three
independent variates were (takiug{oi'l inch as the unit
for rain) gt}"

Sap) = +1137-4, S(rey) = S¥o2'0, Slrsy) = +801°8;

~ L 2

mulsiplying these first BY ¢11, 21, ¢ro and adding, we
have for the partial \rig‘gression on longitude

A By = 30624

similarly, usifigrthe multipliers ¢yy, £, €23 we obtain for

the partighfegression on latitude
¢ '\w

2N\

§ by = —-11204;
a.n‘é\ ally, by using 4, ¢, £33)
& N

O &5 == 130788
N/ gives the partial regression on altitude.

R_emembe_fing now the units employed, it appears
that in the month in question rainfall increased by
*0198 of an inch for each minute of longitude west-
wards, it decreased by ‘0112 of an inch for each minute

f’f latitude northwards, and increased by -oo154 of an
inch for each foot of altjtude.
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Let us calculate to what extent the regression on
altitude is affected by sampling errors. For the 57
recorded deviations of the rainfall from its mean value,
in the units previously used

S(¥%) = 17866 ;
whence, knowing the values of &, &, and 4, we
obtain by subtraction :

S(y—Y)? =994-9. o\

\J
To find 5%, we must divide this by the number of
degrees of freedom remaining after fitting, @formula
involving three variates—that is, by 53—so\that

sT=18-772; O
multiplying this by ¢,; and taklng the square root,
$Vegy = 12421,

Since 7 is as high as 53 we, shall not be far wrong in
taking the regression of gainfail on altitude to be in
workmg units -308, W1th a standard error -124; or
in inches of rain pep- ‘1~oo feet as *154, with a standard
error *062, A\

The importance of the procedure developed in
Ex. 24 liespiCthe generality of its applications, and
in the fact\tha,t the same process is used to glve in
successtn {a) the best regression equation of a given
form; \'shad () the materials for studying the residual
Vamatlon, and the precision of the coefficients of our

%equatlon

We have illustrated and used the fact that the
sampling variance of any coefficient, such as &y, is given
by multiplying the estimated residual variance, 5%, by
the factor ¢, derived wholly from the mdependent
variates. In many applications the calculation of the
multipliers ¢ is of further value owing to the fact that

N
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the sampling covariance of any two coefficients, such
as &y and 4y, is given by multiplying the same estimated
variance by ¢;,.  We may, therefore, without repeating
‘the primary calculations, review the results from a
variety of different points of view. Although it would
be of little interest in the meteorological problern, C
it will In other cases be frequently important g
compare the magnitude of two different coefficients;y
¢.g. to ask if 4, is significantly greater than &\ ~We
need to compare the difference 4, — 4, with its estimated
standard etror, and this will be the squaretest of
s¥er—2¢15-F¢q9), O

since the variance of the differep’eés of any two
“quantities must be the sum ofﬁhéir variances, less
twice their covariance, as d8 <apparent from the
algebraic identity »
' (—9)2 =22yt 42,

By the use of the Enlultipliers, we are thus able to
test the significance ‘of the sum or difference, or indeed
any [linear function, of two or more regression
coefficients, , by calculating its standard error, and
recognisir}g\thé ratio it bears to its standard error
as ¢, lﬁ}@ﬂg degrees of freedom appropriate to the
estimatdn of the residual variance,

N

N\
\» 29'I. The Omission of an Independent Variate

) 2

It may happen that after a regression equation
has been worked out, it appears that one of the
independent variates used is of ILittle interest, and
that it would have been preferable to have omitted
it, and to have calculated the regression on the
others. This could be done by solving anew the set
of equations involving only the squares and products
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of the remaining variates, but this labour may be
avolded. The omission of a single variate will always
increase the number of residual degrees of freedom
by unity, and correspondingly will increase the sum

of squares of deviations from the regression formula
by a quantity corresponding to this 1 degree of o\
freedom. If x, stands for the variate to be omitted, »
we may recall that the variance of the correspondmg.
coefficient 4; was given by the expression o 2R “Fhe
variance of &;/V ¢y; will therefore be o2, and, \

bg?legs \‘

must he the increment added to thp\\s],im of squares
by the omission of the variate x;, &

Equally, if, in the regress@&‘n’formula, we had
wished to replace &3, not by zére, but by a theoretical

value B;, the increment Woutd have been
(&3"‘*}33) {¢ss-

We may also w’fs\h to adjust the coefficients of
the remaining GAriates, which have been already
calculated, to(what they would have been if any
particular xariate, such as x5, had been omitted.
This is, @asﬂy done by subtracting from & the
quant@ s
”\ “ Zss 3
a;fd applying a similar adjustment of the other
coefficients.

[ owe to Professor H. Shultz of Chicago a more
comprehensive application of this method than was
given in the fifth edition. This is to recalculate the
c-matrix from formulz of the form
‘18 “23

r’
L = 19—
£33
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The values ¢ supply the c-matrix which would
have been obtained had variate (3) been omitted,
These give the variances and covariances of the
adjusted coefficients, and also the means of making
the further adjustments needed should it be desired to .
omit a second variate, or indeed more, in succession.. Q

Thus, if the regression of a dependent variate :bg\
worked out on a considerable group of six or sjore
variates, which are regarded as possibly influerttial,
it is always possible, with very little labouty if any
one of them is found to be really unimjsértant, to
obtain from our formula the result whish“would have
been obtained had this one been omitted from the
original calculations. More labqribﬁSIY a succession
of unwanted variates may be digéarded in turn.

29-2. Polynomial Fitting’,;wl;.en the Frequencies
aresDnequal
The advantagesﬂqﬁ the arithmetical procedure of
Sections 28 and¢28:1 may still be obtained when it
is desired to fitna polynomial regression curve of any
specified degree’ to a set of observations of the
dependent.i’réri'ate, the frequencies of which at different
values of\the independent variate are unequal. Here
we shall not be concerned to obtain g sequence of
polymiomials of different degrees, but only to obtain a
~single formula, the coefficients of which will not require
parate tests of significance. We shall illustrate the
process in detail for fitting a cubic curve to the times
taken to run 100 yards by 988 hoys at various ages
from 925 to 19-25 years (H. Gray’s data).
The addition process is applied separately to the
frequencies and to the fofals of sprinting time.
Table 30-3 shows the frequencies in 21 half-year
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classes. To fit a cubic, these are summed seven times
(numbered from o to 6), though the last summation

need not be written out.

Much labour is saved by
choosing a “ working zero,” which we have placed

TABLE 303
ABBREVIATED SUMMATION PROCESS FOR FREQUENCIES ‘\\\
l':'!x
Summation. i..‘: ~
Age. q&:;—:::y, L% Nﬁ
. 2 EN 3. 4. 5 2N 6
° '\\
' 4 v¢ »
925 6 6 3 5 6 6 47N 6
75 8 14 20 26 32 35 v 44
10+25 i0 24 44 70 102 T40N 184
1075 28 L2 gt | 166 268 4 5G2
11-25 29 81 177 | 343 611 1070 1611
1i-75 46 12y 304 | O47 1258\ 2277 1888
1225 40 167 471 | 1118 | 2320N)) 4653 8541
1275 33 220 601 | 1800 | 4a8% 8838 | 17379
13-25 54 274 965 | 2774 | $G5G | 15797 | 33176
13°75 a6 340 | 1305 | 4079, [\IP038 | 26835 | Gooll
8 648 ; ‘;:&
1423 7 4 ,
! 14-7§ ¥1 561 zzqg\\
1525 | 98 490 | I735 | 4975
1375 1 34 305 (T245 | 3290 | 7398
23 ! 8y 308 853 | 1995 | 4138 7661
1675 | 67 ¢ 223 | 545 | 1142 | 2163 | 3803 | 6309
17°23 ;05 42I56 322 | 597 | 1021 1640 2506
1775 44 N ot 66 | 295 424 619 566
18-23 47 75| 109 | 149 195 247
18-7? »\%g\ 22 28 34 40 46 52
19725 ‘\’“.16 & 6 ] 6 & 6
N —
s
P 8 988 | 091 | ou54 |—3640 | 34796 | —53702 | 129109
e & “; |

at 14-25 years. Only the frequencies for age groups
summed forward, The

younger than this are

frequencies for the older age groups are summed
hackward. The first backward summation (number o)
includes the working zero; the others each stop one
step short of the summation before. For the columns
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of even number the forward and backward totals are
added, while for those of odd number the forward is

subtracted from the backward total. The resulting
sums are represented by Sg, S;, . . . S,
TABLE 304
SUMMATION OF ToTAL TIMES '\\\

f - | | ¢\

AR | i, o L A )

i L ~
A

g 25 1014 I0I'4 101-4 101-4'\;.

975 1272 2286 330°0 43¢ A

10725 16770 3956 7250 150

To'75 1 44502 8408 15064 | 423259

1125 4756 1316°4 ¢ 28828 A L5606 2

175 | j130 20294 | 401242 }) 105184

12+ 2§ 612'0 2641 4 75550 | 180720

1275 | Soor3 34417 | 1080503 | 290673

1325 | 8100 42507 | 82470 | 44314'3

1375 § 9438 5Y95'5 j\"#0442'5 | 64756'8

1425 | 12093 | 8358%9

1475 | 0385 | aasi6 | 286569

1525 13034 '\6187-1 21311°3 | 611696

15775 | To7se |V4383-7 | 15324'2 | 396583

16-25 | 1088%0) 38083 | 104405 | 243341

1675 | 8368 | 272005 | 66320 138036

17°25 | G800 1589-7 30115 72616

1775 ¢V 54102 11097 20218 33501

18 Vo297 5685 oIz 1 13283

I“gj‘. 198-4 27100 3436 416.2
"<19’-'25 y2 6 __2'6 726 726

\ | 135504 | Bararg I:I?5926-4 —86433'4i

A similar process with only four summations
(o to 3) is then applied to the total sprinting times,
as in Table 3044, using the same working zero.

In the previous sections,
function is built up of polynom

where our regression
ials of specially chosen
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simplicity, the coefficients were obtained by the
solution of simple equations. In this, as in the last
section, the equations are simultaneous. Four will
be needed for the coefficients of a cubic, and we take
the four sums obtained above from the total times
as the right-hand members of them. The coefficients
of the unknowns on the left-hand sides are obtained, C

from the totals S, . . . S, derived from the frequencies,‘\
according to the following scheme : AN
So S S, S
S; 28,15 355125, 45435, ’\\ '

S; 353428,  65,465;+5, 1055+1234:+353
Sp  454+38; 105;+125,4-35, 2056+~§955+1254+53

This table is not changed, but if néééssary extended,
when curves are fitted of degré:es:other than three.
It is a good intelligence test o write down the next
two or three rows and colutans from those given for
a cubic curve. We as&‘brought therefore to the

e y
quations A\ Right-hand Check
¢ 2\J Values. Column.
na8A 4 991B -~ }054(3 —  3640D'= 135504 209434
goIA 4- 1goggBR £h 7I88C L+ 128204D = Bard-g 1637564
gosah + 718 1950000 — 130388D = 12502674 2077704
—36404 4 12{326}@'— 130388C 4 13850320 = —B86433°4 12928346

where t&fg}ﬁnknowns A, B, Cand D are the polynomial
valug@t'the working zero, and its first three advancing
differénces. The process of solution is shown in full
“Below. Since the coefficients on the left form a
§ymmetrical matrix, duplicate values may be omitted.
The work in this example is also arranged to exhibit
the use of a check column, which is merely the sum
of the numbers in the same row, irrespective of which
side of the equation they belong to. The numbers in
this column are treated just as are those in the
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adjacent column at each stage of the solution of the
equations, and afford a check for each row of figures.
as 1t is completed. The arithmetical details are given
in Table 305 as arranged for machine calculation.

TABLE 30§
STEPS IN THE DIRECT SOLUTION OF FOUR EQUATIONS .\{\
Coefficients of Unknowns. Right-hand c%iﬁi )
£ 3
988 991 9054 | —3640 | 135504 200434
10006 7188 128264 Bzrq " 1637564
195090 | —130388 | 12502644 207770
1385032 —8643314 1292834-6
1'355162 | 1-839448 | 12-06547 18345312 3371320
16°00107 2667970 |22 46350 6098372
254°4514 O\ 1631422 456-3358

\ }
1992475 | 1461470 *\f\ 27257035 3072429
18-32080 o\ ¢ 13-63284 33742411

34°385737 N |

When the number gf\equations has been reduced to
one, the value of. &)is calculated ; B is then found by
substitution ig the second equation, and a new value
for A frompthe first of the pair of equations at the
penultimats stage. In the same way C, B and A are
caleul; ’?1’ from the trio of equations,and D, C, B and A
frqn&tﬁe original equations by substitution for each
' }in}cnown always in its appropriate equation. Such a

N - TABLE 306

i

)
N/ S0LUTIONS CHECKED BY EACH EQUATION
A, J B c. i D. |
13°95742 ‘ ‘
| 42 —*36g0900 !
! 42 go ‘01802630
f 42 83 49 ‘01015438
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TABLE 307

DEVELOPMENT OF POLYNOMIAIL VALUES ¥ROM THE SOLUTIONS
OF THE EQUATIONS

Observed Fitted Differences.
Mean Polynomial | --- R
Times. Values. Ist. 2nd. 9rd,
16 g 1640
000
139 10°41 — 0835 A
—o74 | \
167 16+34 | —0734 Ko
- 148 o\}; »
15'g 16719 | —rob32 '\'\\ 3
——=r2IT | » &
16° 1508 —-05 (v
4 59 264 3{\
15°5 1572 7.{
— 307 v
153 1541 Q{‘; 0327
— 340, N\
I3T 1507 R —0220
—gb2’
150 I4°71 a —-0124
8T
14°3 £4°33 \'\ —oo23
, O — 377 007
I3 I3 *
i .~~N§$¥ —- 3691
13'5 O1859 +01803
o) — 353 ‘010154
133 N7 1324 +0282
O — 323
{@“ 12:9I ‘0383
‘.‘:; — 285
A1z 12:63 -0485
N —-236
' oo12:4 I2'39 0586
—-1%8
iz'o 12°21 0688
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complete system of checking obviates all arithmetical
errors, and from the extent of the variations observed
in the solutions gives an idea of the extent to which
the limited accuracy of the process of solution can
affect the results.

To obtain the fitted polynomal values to 2 df‘Clmd_}\
places, we may retain 3, 4, 5and 6 places in A, B, C, 10}
and build up the polynomial by successive addlmon As
in Table 30-7. It will be understood that in foriming
the second differences on a machine, 6 places{&re visible
at each stage, although oniy‘ 4 need be agritten down,
using the nearest integer in the 4th plaggd.y For the rest,
the table explains itself. N

The sum of the squares of ~t‘he polynomlal values,
multiplied by their appropriate fréquencies, is found as
usual by multiplying the gélution of the regressmn
equations by the r1ght~hand values. Since in this
case the regression equations contain an absolute
term, A, this willfnot give the sum of squares of
dev1at10ns from ¢he 'mean, but from zero. To reduce
to the mean ye'must deduct (13550°4)% —988, leaving
for 3 degrees of freedom the value 1645-58. Deducting
this fro:guthe 20 degrees of freedom for differences
amongy“classes, there remains 31-24 representing
resk al deviations from the fTJIlCthI] ﬁtted

AN Degrees of | Sumof | Mean |
™ : ' Freedom. Squares. Square. |
Regression . : . 3 164558 | 54853
Residual differences | . 17 3124 1-838
Within age groups . . 967 1620° 27 ' 1-676
Total . . . 987 | 3297'09 |
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The adequacy of the form of curve chosen for
representing the sequence of means observed may be
judged by comparing the mean square derived from
the deviations with that within age classes. The
average sum of squares within year groups, derived
from the standard deviations at each age given by
Gray, is 1620:27. The whole variation among the
988 times recorded has thus been analysed intp()
three portions (see preceding Table). ) ig\

Since the mean square for residuals approxi-
mates closely to that observed among run'ggs’ of
the same age, it is evident that no Qirye could
fit the data appreciably better. In applying this
test we have anticipated the metl—{ﬁ‘ explained in

Section 44. \‘\'>
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THE CORRELATION COEFFICIENT ~
N

30. No quantity has been more characteristic ﬁ)fx
biometrical work than the correlation coefﬁment,xand'
no method has been applied to such variousy data
as the method of correlation. Observationalhdata in
particular, in cases where we can observ€ \the occur-
rence of various possible contrlbut{)ry causes of
a phenomenon, but cannot control/them, has been
given by its means an altogeth\er new 1mp0rtance
In experimental work proper, jt8 p051t10n i1s much
less central ; it will be found; wseful in the exploratory
stages of an inquiry, as When two factors which had
been thought independeiit appear to be associated
in their occurrence ; \b\ut it is seldom, with controlled
experimental condsfions, that it is desired to express
our conclusion dn the form of a correlation coefficient.
One of thiesearliest and most striking successes of
the methgcﬁof correlation was in the biometrical study
of inh’e];ité’ﬁce. At a time when nothing was known
of the\r\nechanism of inheritance, or of the structure of
’the\germmal material, it was possible by this method
\to "demonstrate the ex1stence of inheritance, and to
 measure 1ts intensity ' ; and this in an organism in
which experimental breeding could not be practised,
namely, Man. By comparison of the results obtained
from the physical measurements in man with those
obtained from other organisins, it was established that
man’s nature is not less governed by heredity than

175
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that of the rest of the animate world, The scope of
the analogy was further widened by demonstrating
that correlation coefficients of the same magnitude were
obtained for the mental and moral qualities in man
as for the physical measurements.

These results are still of fundamental importances
for not only is inheritance in man sull incapable b
experimental study, and existing methods of miental
testing are still unable to analyse the mental dmposx-
tion, but even with organisms suitable fOI‘.,?ngI iment
and measurement, it is only in the mogt $avourable
cases that the several factors causing fluctuating
variability can be resolved, and théir effects studied,
by Mendelian methods. Such\[jltictuating variahility,
withan approxnnately normal distfibution, ischaracter-
istic of the majority of the usgful qualities of domestic
plants and animals; agd although there is strong
reason to think tha.t \thheritance in such cases is
ultimately Mendeliah) the biometrical method of study
is at present algfig capable of holding out hopes of
immediate progrdss.

That thissmethod was once centred on the corre-
lation cdefficient gives to this statistic a certain
1mp0rf:ance even to those who prefer to develop their
an%v 1s i other terms.

e give in Table 31 an example of a correlation

~ iable It consists of a record in compact form of the
" stature of 1376 fathers and daughters. (Pearson and
Lee’s data) The measurements are grouped in
inches, and those whose measurement was recorded as

an integral number of inches have been split ; thus a
father recorded as of 67 inches would appear as 4 under
66°5 and § under 67+5. Similarly with the daughterb ;

i consequence, when both measurements are whole
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numbers the case appears in four quarters. This
gives the table a confusing appearance, since the
majority of entries are fractional, although they
represent frequencies. The practice of splitting
observations is not to be deliberately imitated. A
little care in the choice of group limits will avoid
all ambiguity. When many items are split, Sheppard’s\\"
corrections are no longer accurate. O
The most obvious feature of the table is that ca:se"sx
do not occur in which the father is very tall and the
daughter very short, and zéce versa; the u E‘é’ right-
hand and lower left-hand corners of the tab}e{li‘e blank,
so that we may conclude that such occubrences are too
rare to occur in a sample of about /7460 cases. The
observations recorded lie in a ropghly elliptical figure
lying diagonally across the tahle.” If we mark out the
region in which the frequeneies exceed 10 it appears
that this region, apart frtém natural irregularities, is
similar, and similarly, situated. The frequency of
occurrence increasesfrom all sides to the central region
of the table, wheke”a few frequencies over 30 may
be seen. TheMines of equal frequency are roughly
similar and\&milarly situated ellipses. In the outer
zone 0b§e?iz‘aitions occur only occasionally, and there-
fore ir(ég“ﬁlariy; beyond this we could only explore
by gaking a much larger sample.
..y The table has been divided into four quadrants by
(Unarking out central values of the two variates ; these
values, 67+5 inches for the fathers and 635 inches for
the daughters, are near the means. When the table
s so divided it is obvious that the lower right-hand
and upper left-hand quadrants are distinctly more
populous than the other two; not only are more

squares occupied, but the frequencies are higher. It
N
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is apparent that tall men have tall daughters more
frequently than the short men, and vice versa. The
method of correlation aims at measuring the degree
to which this association exists.

The marginal totals show the frequency distribu-
tions of the fathers and the daughters respectively.
These are both approximately normal distributiongs
as is frequently the case with biometrical data collegte
without selection. This marks a frequent diffetenke
between biometrical and experimental datay’ An
experimenter would perhaps have bred frzo@‘t‘wo con-
trasted groups of fathers of, for exaudple, 63 and
72 inches in height ; all his fathers wonld then belong
to these two classes, and the correlation coefficient, if
used, would be almost meaningl&séﬁ Such an experi-
ment would ‘serve to asceftain the regression of
daughter’s height on fathef’s height and so to deter-
mine the effect on theof:l;?siughters of selection applied
to the fathers, but it Wwoeuld not give us the correlation
coefficient, which i§ a descriptive observational feature
of the pepulatidn-as it is, and may be wholly vitiated
by selectiong\ _

Just sg§normal variation with one variate may
be spepified by a frequency formula in which the
logafithm of the frequency is a quadratic function
Of\ he variate, so with two variates the frequency

__(\may be expressible in terms of a quadratic function
"N of the values of the two variates. We then have &
normal correlation surface, for which the frequency
may conveniently be written in the form
1 1 'Ei_ 2pacy

yz
df = ————e— & 3li—p) o)} Fof A dy
4 2700,V 1 —p? N—pitlet oo u,} "y

In this expression x and » are the deviations of
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the two variates from their means, s, and o, are the
two standard deviations, and p 1s the correlation
between x and y. The correlation in the above
expression may be positive or negative, but cannot
exceed unity in magnitude; it is a pure number
without physical dimensions. If p = o, the expression
for the frequency degenerates into the product of the\\

two factors ¢\
I _= i > )
\/.._ ¢ zotdx . T 2o dy, .\
o/ 27 oy 2T A
N

$
2 ¢

showing that the limit of the normal coﬁ%lation sur-
face, when the correlation vanishes, 1) merely that of
two normally distributed variates vaﬁrylng n complete
mdependence. At the other ex}seme when p 15 +1
or —1, the variation of the twQ Variates is in strict pro-
portion, so that the value ¢f either may be calculated
accurately from that of, the ‘other. In other words, we
cease strictly to haye.two variates, but merely two
measures of the sam} variable quantity.

If we pick $ub the cases in which one variate has
an assigned yvelue, we have what is termed an array ;
the colummns“and rows of the table may, except as
regard&vﬁ‘rlatlon within the group limits, be regarded
as a&a‘ys With normal correlation the variation
thhhl an array may be obtained from the general

Mf(}rmula, by giving x a constant value, (say) &, and
\/dwldmg by the total frequency with which this value
occurs ; then we have

]
f= ——=—— g z2(1—p%a a1l dy,
4 oV 27V 1 —p? ? ’

showing (i} that the variation of ¥ within the array 1s
normal ; (ii) that the mean value of y for that array is
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pao,oy, so that the regression of y on x is linear, with
regression coefficient o
P;,

and (jii) that the variance of y within the array is
0.2(1—p%), and is the same within each array. We
may express this by saymg that of the total variange,
of » the fraction (r—p?) is independent of x, whis’
the remaining fraction p?, is determined by, ot -Cal-
culable from, the value of ». K7, N

These relations are reciprocal ; the regréssion of x
on y is linear, with regression coefficient pay fo, 3 the
correlation p is thus the geometric fMean of the two
regressions. The two regressiom’iines representing
the mean value of x for given y, and the mean value of
y for given z, cannot coincide uniess p = 4:1. The
variation of x within an ,a.rray in which y is fixed is
normal with variance gqual to o,2(1—p?), so that we
may say that of the. \?\a\nance of x the fraction (I— )

. is independent ofi#,and the remaining fraction, p?,

determined byor calculable from, the value of y.

Such arg $he formal mathematical consequences of
normal c“gf:l(e']ation. Much biometric material certainly
shows\'ﬁiﬁgéneral agreement with the features to be
expeéted on this assumptlon ; though 1 am not
awére that the quesuon has been subjected to any

\suﬂimently critical 1nqu1ry Approximate agreement

is perhaps all that is needed to justify the use of the
correlation as a quantity descriptive of the population ;
its efficacy in this respect is undoubted, and it is not
improbable that in some cases it affords, in conjunction
with the means and variances, a complete description
of the simultaneous variation of the variates.
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31. The Statistical Estimation of the Correlation

Just as the variance of a normal population in one
variate may be most satisfactorily estimated from the
sum of the squares of deviations from the mean of
the observed distribution, so, as we have seen, the
only satisfactory estimate of the covariance, when the ¢
variates are normally correlated, is found from the su.m\
of the products. The estimate used for the correlahon
is the ratio of the covariance to the geometric mean of
the two variances. If x and y represent the:@watlons
of the two variates from their means, we caleulate the
three statistics s,, s, # by the three equations

A
nsy® = S(x%),  nsg® = S(¥7, iz = S(xy);

then s, and s, are estimates of fhe standard deviations
o; and oy, and » is an estmn,ate of the correlation p.
Such an estimate is called. ‘the correlation coefficient,
or the product moments \correlation, the latter term
referring to the supimation of the product terms, xy,
in the last equation. The value used for # should
properly be the number of degrees of freedom, or one
less than the;fiumber of pairs of observations in the
sample. »A% far as the value obtained for # is con-
cerned{ however, the value used for # is indifferent,
and\i} is usually convenient to base the calculation
d{rectly on the sums of squares and products without
\ \dividing by 7.

The method of calculation might have been derived
from the consideration that the correlation of the
population is the geometric mean of the two regression
coefficients ; for our estimates of these two regressions

would be
S{xy) S(xy)
565 29 55
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so that it is in accordance with these estimates to take
as our estimate of p .
_ S
IRECEES]
which is in fact the product moment correlation.

Ex. 25. Parental correlation in stature—The .
numerical work requlred to calculate the correlatipn:
coefficient is shown in Table 32, RAY,

The first eight columns require no explanamon
since they merely repeat the usual process, 0{ finding
the mean and variance of the two marglwl distribu-
tions. [t is not necessary actually tosfind the mean,
by d1v1d1ng the total of the 3rd\\column, 480°3,
by 1376, since we may work Qll through with the
.undivided totals. The correqtion for the fact that
our working mean is not theltrue mean is performed
by subtracting (480°5)% 1376 in the 4th column;

a similar correction appears at the foot of the 8th
columnn, and at thelfoot of the last column. The
correction for tl‘ﬁ\;sum of products is performed by
subtracting 480 % 260°5-+1376. This correction of
the product term may be positive or negative ; if the
total devidtions of the two variates are of opposite sign,
the corséetion must be added. The sum of squares,
witlrand without Sheppard’s adjustment (137612},
are shown separately; there is no corresponding
*}adjustment to be made to the product term.

The gth column shows the total deviations of the
daughter’s height for each of the 18 columns in which
Table 31 is divided. When the numbers are small,
these may usually be written down by inspection of
the table. In the present case, where the numbers
are large, and the entries are complicated by quarter-
ing, more care is required. The total of column g
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checks with that of the 3rd column. In order that it
shall do so, the central entry 4155, which does not
contribute to the products, has to be included. Each
entry in the gth column is multiplied by the paternal
deviation to give the 1oth column. In the present
case all the entries in column 10 are posmve fre-«
quently both positive and negative entries occur, an?i
it is then convenient to form a separate column for
each. A useful check is afforded by repeatmg the
work of the last two columns, interchapging the
variates ; we should then find the total\dewatmn of
the fathers for each array of daughter$yvand multiply

by the daughters’ deviation. The anorrected totals,

5136-25, should then agree. T\hls theck is especially

useful with small tables, in which the work of the

last two columns, ca.rrled vt rapidly, is liable to
error, :

The value of thes correlatmn coefficient, using
Sheppard’s adJustn{Bnt is found by dividing 504528
by the geometrQ\mean of 9209+0 and 10,392°5; its
value is +-3157: If Sheppard’s adjustment had not
been usedpwe should have obtained 4-+5097. The
differencq“is in this case not large compared to the
erro&b“@f random sampling, and the full effects on the
distribution in random samples of using Sheppard’s
adjustment have never been fully examined, but there

“an be little doubt that Sheppard’s adjustment should

be used, and that its use gives generally an improved
estimate of the correlation. On the other hand, the
distribution in random samples of the uncorrected
value is simpler and better understood, so that the un-
corrected value should be used in tests of significance,
in which the effect of correction need not, of course, be

overloo'ked'. For simplicity coarse grouping should
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be avoided where such tests are intended. The fact
that with small samples the correlation obtained by
the use of Sheppard’s adjustment may exceed unity
illustrates the disturbance introduced into the random
sampling distribution.

32. Partial Correlations

~

N

A great extension of the utility of the idea 0{“

cerrelation lies in its application to groups of more thah
two variates. In such cases, where the cor:;@a"tjon
between each pair of three variates is known) it is
possible to eliminate any one of them,.afhd so find
what the correlation of the other two would be in a
population selected so that the third" variate was
censtant. {'\‘\:

When estimates of the thwre¢ correlations are
obtainable from the same bodfi 0f data the process of
elimination shown below will 'give an estimate of the
partial correlation exactly comparable with a direct
estimate, O

Ex. 26. Elimi#ation of age in organic correlations
with growing chibdren.—For example, it was found
(Mumford and“Young’s data) in a group of boys of
different ages, that the correlation of standing height
with chgsivgirth was +-836. One might expect that
part pﬁ;ﬁ'lis association was due to general growth with
incfeasing age. It would be more desirable for many
Purposes to know the correlation between the variates
for boys of a given age; but in fact only a few of the
boys will be exactly of the same age, and even if we
make age groups as broad as a year, we shall have
in each group many fewer than the total number
measured. In order to utilise the whole material, we
only need to know the correlations of standing height
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with age, and of chest girth with age. These are given
as <714 and *708.

The fundamental formula in calculating partial
correlation coefficients may be written

rrgy = —em 2 MW .

V(1 —r®) (L—7g®) "\

Here the three variates are numbered 1, 2, and g;z'a,xnd

we wish to find the correlation between 1 and &) Wwhen

3 is eliminated ; this is called the “ partial »” edrrelation

between 1 and 2, and is designated by, #gss, to show

that variate 3 has been eliminated. ‘Flg symbols 7y,

713, 725 indicate the correlations found directly between

each pair of variates, these cpa‘:z}léltions being dis-
tinguished as “ total ”” correlations.

Inserting the numerical values in the formula
given we find 755 = °<§68;'éhoxving that when age is
eliminated the correlatioh, though still considerable,
has been markedlyrreduced. The mean value stated
by the above-mgn\loned authors for the correlations
found by grotping the boys by years, is *653, not a
greatly difféent value. In a similar manner, two or
more vatiates may be eliminated in succession ; thus
with folir variates, we may first eliminate variate 4,
i:ty{\\ehr’ice applying the formula to find 745, #7150, 2nd
Py Then applying the same formula again, to

.\:"}these three new values, we have
3
N\ P24 71347234
V(1 ""?‘13-1_2) (1—723.4%)

The labour increases rapidly with the number of
variates to,be eliminated. To eliminate s variates,
the number of operations involved, each one applica-
tion of the same formula, is }s(s+41)(s+2); for
values of s from 1 to 6 this gives 1, 4, 10, 20, 35, 50

Frap4 =
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operations. Much of this labour may be saved by using
tables of /1 —#?2 such as that published by J. R. Miner.

Like the independent variates in regression, the
variates eliminated in correlation analysis need not be
distributed even approximately in normal distributions.
Equally, and this is most frequently overlooked,

random errors in them introduce systematic errors in*

N

the results. For example, if the partial correlation ofy
variates (1) and (2) were really zero, so that 7, were”

equal to 735 74;, random errors in the measuremeént or
evaluation of variate (3) would tend to redtice both
#1a and 7y, numerically, so that their product must
be numerically less than 7,. An apparent partial
correlation between the first two variapes will therefore
be produced by random errors in\the third.

The meaning of the correlation coefficient should
be borne clearly in mind¢3'The original aim to
measure the “ strength oftheredity ” by this method
was based clearly on theé'supposition that the whole
class of factors whig:h&end to make relatives alike, 1n
contrast to the drijkeness of unrelated persons, may
be grouped together as heredity. That this is so for
all practica.l‘pﬁf-poses is, I believe, admitted, but the
correlatiomdoes not tell us that this is so; it merely
tells us}\(hé“degree of resemblance in the actual popula-
tion, swidied, between father and daughter. It tells
_us™{o “what extent the height of the father is relevant
Cinformation respecting the height of the daughter, or,
otherwise interpreted, it tells us the relative importance
of the factors which act alike upon the heights of father
and daughter, compared to.the totality of factors at
work., If we know that B is caused by A, together
with other factors, independent of A, and that B has
no influence on A, then the correlation between A
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and B does tell us how important, in relation to the
other causes at work, is the influence of A. If we have
not such knowledge, the correlation does not tell us
whether A causes B, or B causes A, or whether both
influences are at work, with or without the effects of
COMMOI Causes.

This is true equally of partial correlations. T wen
know that a phenomenon A is not itself influential,ir»
determining certain other phenomena B, C, D, {2,
but on the contrary is probably directly inﬁugné:e}d by
them, then the calculation of the partial gdrrélations
A with B, C, D, . . ., in each case elithinating the
remaining values, will form a most valiable analysis
of the causation of A. If on the eohtrary we choose
a group of social phenomenaswith no antecedent
knowledge of the causation or) absence of causation
among them, then the alculation of correlation
coefficients, total or pgt{iial, will not advance us a
step towards evaluating the importance of the causes
at work. R

The correlation’ between A and B measures, on a
conventionalscale, the importance of the factors which
(on a balafite” of like and unlike action) act alike in
both Asand B, as against the remaining factors which
affect(A‘and B independently. If we eliminate a third
vafiate C, we are removing from the comparison all

~those factors which become inoperative when C is

e

“fixed. If these are only those which affect A and B
independently, then the correlation between A and B,
thether positive. or negative, will be numerically
increased. We shall have eliminated irrelevant dis-
turbing factors, and obtained, as it were, a better
cont%‘olled experiment. We may also require to
eliminate C if these factors act alike, or oppositely
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on the two variates correlated ; in such a case the
variability of C actually masks the effect we wish to
investigate. Thirdly, C may be one of the chain of
events by the mediation of which A affects B, or wice
versa. The extent to which C 1s the channel through
which the influence passes may be estimated by

elimmating C; as one may demonstrate the small”

cffect of latent factors in human heredity by finding),

the correlation of grandparent and grandchild, elip-~

inating the intermediate parent. Inno case, however,
can we judge whether or not it is profitable tg €litninate
a certain variate unless we know, or at€ willing to
assume, a qualitative scheme of causation. For the
purely deseriptive purpose of specifyifig a population
in respect of a number of variatés) either partial or
total correlations are effective, and-Correlations of either
type may be of interest. NP
As an illustration we may consider in what sense the
coefficient of correlation does measure the ‘ strength
of heredity,” assuming&\that heredity only is concerned
in causing the réseriblance between relatives; that
is, that any enVjronmental effects are distributed at
haphazard. 2Jd the first place, we may note that if
such em{ir:ﬁﬁmental effects are increased in magni-
tude, fhe correlations would be reduced; thus the
same\population, genetically speaking, would show
highér correlations if reared under relatively uniform
Santritional conditions, than they would if the nutri-
tional conditions had been very diverse, although the
genetical processes in the two cases were identical.
Secondly, if environmental effects were at all influential
(as in the population studied seems not to be indeed the
case), we should obtain higher correlations from a
mixed population of genetically very diverse strains
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than we should from a more uniform population.

Thirdly, although the mfluence of father on daughter
is in a certain sense direct, in that the father contri-
butes to the germinal composition of his daughter, we
must not assume that this fact is necessarily the cause
of the whole of the correlation ; for it has been showns
that husband and wife also show considerable resgri

blance in stature, and consequently taller fathersttend -
to have taller daughters partly because they choe}se or
are chosen by, taller wives. For this réason, for
example, we should expect to find a notlce@;le positive
correlation between stepfathers and\stépdaughters ;
also that, when the stature of thepife is eliminated,
the partial correlation between. father and daughter
will be found to be lower thah ‘the total correlation.
These considerations serve teisome cxtent to define the
sense in which the somev&hat vague phrase “ strength
of heredity ” must be: mterpreted in speaking of the
correlation coefficient? It will readily be understood
that, in less welldfntlerstood cases, analogous considera-
tions may be of some importance, and should be
critically Fgﬁsidered with all possible care.

"\w
%“‘{53 Accuracy of the Correlation Coefficient

ith large samples, and moderate or small corre-
latlons the correlation obtained from a sample of #
) “pairs of values is distributed normally about the true
value p, with variance,

(I __Pﬁ\g
n—I
it is_therefo_re usual to attach to an observed value 7,
a standard error (1—#?)}/vn—1, or (1—-;@/‘\/% This

procedure is only valid under the restrictions stated
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above ; with small samples the value of # is often very
different from the true value, p, and the factor 1—?2,
correspondingly in error; in addition, the distribution
of # is far from normal, so that tests of significance
based on the large-sample formula are often very
deceptive. Since it is with small samples, less than
100, that the practical research worker ordinarily.
wishes to use the correlation coefficient, we shall give,
an account of more accurate methods of handling the™
results. A\

In all cases the procedure is alike for total’and
for partial correlations. Exact account maybe taken
of the differences in the distribution§ i the two
cases, by deducting unity from the/sample number
for each variate eliminated ; thu,s\grspé'rtial correlation
found by eliminating three vafiates, and based on
data giving 13 values for ea,ch’%variate, is distributed
exactly as is a total correlation based on 10 pairs of
values.

$

3

34. The Significan@"of an Observed Correlation

In testing the significance of an observed correla-
tion we requifg to calculate the probability that such
a correlatien-8hould arise, by random sampling, from
an unc%‘:fgg‘l’ated population. If the probability is low
we regard the correlation as significant. The Table
of £given in the preceding chapter (p. 174) may be
Utilised to make an exact test. If »' be the numbers
* of pairs of observations on which the correlation is
based, and # the correlation obtained, without using

Sheppard’s adjustment, then we take

¥ —e

Vg V=2,

nw=un—2,




\/
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and it may be demonstrated that the distribution of
¢ so calculated, will agree with that given in the table.

It should be observed that this test, as is obviously
necessary, is identical with that given in the last
chapter for testing whether or not the linear regression
coefficient differs significantly from zero. )

Table V.A. (p. 209) allows this test to be appl’iezd\
directly from the value of 7, for samples up td_ 500
pairs of observations. Taking the four definite)levels
of significance, represented by P = -10, = 02, and
.01, the table shows for each value of n,ftom 1 to 20,
and thence by larger steps to 100, thé, eorresponding
values of 7. AV

Ex. 27. Significance of a &ovrelation coefficient
between autumn yainfall cz@i}@blzeat crop—For the
twenty years 1885-1904, (the mean wheat yield of
Eastern England was founid to be correlated with the
autumn rainfall ; thé:éérrelation found was —-629.
Is this value sigx{iﬁcant? We obtain in succession

¢ '\\..5 1—#2 = 6044,

Vi—r*= 7774,
\&" #/vV1—2t = — 8091,
2 t = —3'433.

Fo}\%= 18, this shows that P is less than -or, and
thé correlation is definitely significant. 'The same

O conclusion may be read off at once from Table V.A.

N
Y

entered with » = 18.
If we had applied the standard error,

o 1—22
Ry
we should have -
p=l e T N1 = —40536,

2
- T —%
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a much greater value than the true one, very much
exaggerating the significance. In addition, assuming
that » was normally distributed (z= ), the signifi-
cance of the result would be even further exaggerated.
This illustration will suffice to show how deceptive, in
small samples, is the use of the standard error of the

correlation coefficient, on the assumption that it will
be. normally distributed. Without this assumptiofy
the standard error is without utility. The misleading’

character of the formula is increased if #' is substituted
for #'—1, as if often done. Judging from tht,\\normal
deviate 4'536, we should suppose that the' }:orrelatlon
cbtained would be exceeded in random ‘samples from
uncorrelated material only 6 times m\a million trials.
Actually it would be exceeded. ‘about 3000 times in
a million trials, or with 500 ‘mmes the frequency
supposed N

[t is necessary to warn i:he student emphatically
against the misleading.character of the standard error
of the correlation coefficient deduced from a small
sample, becauseghe-principal utility of the correlation
coefficient liesfin its application to subjects of which
little is kne@wn, and upon which the data are rela-
tively scamey. With extensive material appropriate
for bigtpetrical investigations there is little danger
of fa‘is\e conclusions being drawn, whereas with the
cmnparatwely few cases to which the experimenter
\must often look for guldance, the uncritical applica-
tion of methods standardised in biometry must be so
frequently misleading as to endanger the credit of this
most valuable weapon of research. [t is not true, as
the example above shows, that valid conclusions cannot
be drawn from small samples; if accurate methods
are used in calculating the probability, we thereby
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make full allowance for the size of the sample, and
should be influenced in our judgment only by the value
of the probability indicated. The great increase of
certainty which accrues from increasing data is
reflected in the value of P, if accurate methods are
used. .

Ex. 28. Significance of a partial corvelation
coefficient.—In a group of 32 poor law relief unigh,
Yule found that the percentage change from 188" to
1891 in the percentage of the population in’@é’e'ipt of
relief was correlated with the corresponding’¢hange in
the ratio of the numbers given outdooi{gelief to the
numbers relieved in the workhouse, hen two other
variates had been eliminated, namely, the correspond-
ing changes in the percentage p}‘ﬁle population over
65, and in the population itself..”

The correlation found«hy Yule after eliminating
the two variates was 423457; such a correlation is
termed a partial correlatif)n of the second order. Test
its significance.

It has been deémonstrated that the distribution in
random samples of partial correlation coefficients may
be derivedrom that of total correlation coefficients
merely:..ligg} deducting from the number of the sample
the.m\kmber of variates eliminated. Deducting 2 from
thl?f?)\2 unions used, we have 30 as the effective number

~0f the sample ; hence
b 3

3

n = 28,
Calculating # from # as before, we find
| t = 2719,

whence it appears from the table that P lies between
02 and +01. The correlation is therefore significant.
This, of course, as in other cases, is on the assump-
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tion that the variates correlated (but not necessarily
those eliminated) are normally distributed ; economic
variates seldom themselves give normal distributions,
but the fact that we are here dealing with rates of
change makes the assumption of normal distribution
much more plausible. The values given in Table V.A.
for » = 25, and » = 30, give a sufficient indication of .
the level of significance attained by this observation, \

2.7
"Q
o~ ~

35. Transformed Correlations QO

In addition to testing the significance of & Correla-
tion, to ascertain if there is any substanl;iﬁkevidence
of association at all, it is also frequently“required to
perform one or more of the following operations, for
each of which the standard error V\{d‘u d be used in the
case of a normally distributed{"\?:piantity. With cor-
relations derived from large), samples the standard
error may, therefore, bq,js'd”used, except when the
correlation approaches .34 ; but with small samples
such as frequently odur in practice, special methods
must be applied to\’{;})tain reliable results.

(i) To test™if an observed correlation differs
gighiﬁcantly from a given theoretical value.
(i) Lo test if two observed correlations are
(\Vsignificantly different.
,‘@{'%)”’If a number of independent estimates of a
.,,\Cf" correlation are available, to combine them
Q into an improved estimate.
N\ (iv) To perform tests (i) and (i) with such
average values.
Problems of these kinds may be solved by a method

analogous to that by which we have solved the problem
of testing the significance of an observed correlation.
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In that case we were able from the given value 7 to
calculate a quantity £ which is distributed in a known
manner, for which tables were available, The trans-
formation led exactly to a distribution which had
already been studied. The transformation which we
shall now employ leads approximately to the normal
distribution in which all the above tests may be carri@
out without difficulty. Let ’

2\ 3
< W3

g >

z= E{105:»;,(1~}—?~)-~log‘(1 -}, K O

=ittt \\“

then as # changes from o to 1, £ will pas’?ffom 0 1o w.
For small values of 7, z is nearly\equél to #, but as
# approaches unity, 2 increases; without limit. IFor
negative values of 7, 2 is negative. The advantage of
this transformation of intg.éjlies in the distribution of
these two quantities in random samples. The standard
deviation of » depends'oh the true value of the corre

lation, p, as is seer\,\froin the formula

\J 1—pt
N g, = —m——.
AR —1

Since 'j% “unknown, we have to substitute for it the

obseryed value #, and this value will not, in small
samples, be a very accurate estimate of p. The

Jstandard error of 2 is simpler in form, approximately

o 1

0': - ]
Vu'—3

and is practically independent of the value of the

correlation in the population from which the sample 1s
drawn.

In the second place, the distribution of » 1s not
normal in small samples, and even for large samples it
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remains far from normal for high correlations. The
distribution of 2 is not strictly normal, but it tends to
normality rapidly as the sample is increased, whatever
may be the value of the correlation. We shall give
examples to test the effect of the departure of the z
distribution from normality.

Finally, the distribution of # changes its form’\f
rapidly as p is changed ; consequently no attempt caf,
be made, with reasonable hope of success, to atll(:}W‘fcof"x
the skewness of the distribution, On the contrary; the
distribution of z is nearly constant in formgand the
accuracy of tests may be improved by.smail correc-
tions for departure from normality ; supht corrections
are, however, too small to be of praéfical importance,
and we shall not deal with them.\The simple assump-
tion that z is normally distributed will in all ordinary
cases be sufficiently accuratesi®

These three advantageg-ef the transformation from
# to z may be seen by, comparing Figs. 7 and 8. In
Fig. 7 are shown thie actual distributions of 7, for 8
pairs of observagions, from populations having cor-
relations o andho-8; Fig. 8 shows the corresponding
distributiom glirves for z.  The two curves in Fig. 7
are widelgydifferent in their modal heights; both are
distinetly) non-normal curves; in form also they are
stron contrasted, the one being symmetrical, the
otfier highly unsymmetrical. On the contrary, in

\Flg 8 the two curves do not differ greatly in height ;
although not exactly normal in form, they come so
close to it, even for a small sample of 8 pairs of observa-
tions, that the eye cannot detect the difference ; and
this approximate normality holds up to the extreme
limits p = +1. One additional feature is brought out
by Fig. 8 ; in the distribution for p = 0°8, although the
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curve itself is as symmetrical as the eye can judge of,
yet the ordinate of zero error is not centrally placed.

g -8
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The figure, in fact, reveals the small hias which
is introduced into the estimate of the correlation
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coefficient as ordinarily calculated : we shall treat
further of this bias in the next section, and in the
following chapter shall deal with a similar bias intro-
duced in the calculation of intraclass correlations.

To facilitate the transformation we give in Table
V.B. (p. 210) the values of 7 corresponding to values of
2, proceeding by intervals of -o1, from o to 3. In the \\
earlier part of this table it will be seen that the valies)
of » and # do not differ greatly ; but with hlgher cor-
relations small changes in # correspond to :&amve]y
large changes in 2. In fact, measured on t(he z-scale,
a correlation of 'go differs from a corselation -g5
by more than a correlation 6 exceeds zero. The
values of z give a truer picture of thérelative import-
ance of correlations of dlﬂ'erep\it‘~51zes than do the
values of 7,

To find the value of 21 {;orrespondmg‘ to a given
value of #, say +6, the gntries in the table lying on
either side of -6 are flt found, whence we see at once
that z ltes between 6} and '70; the interval between
these entries is then divided proportionately to find
the fraction ,tb>be added to 6g. In this case we
have 20/6{ Of -31, so that z = *6931. Similarly, in
finding the" value of # corresponding to any value
of s, iy -9218, we see at once that it lies between

7259\and 7306 ; the difference 1s 47, and 18 per

~cent. of this gives 8 to be added to the former value,

\gwmg us finally # = -7267. The same table may
thus be used to transform # inte 2, and to reverse the
process.

Ex. 29. Zest of the approxzmate norma[zty of the
distribution of z.—In order to illustrate the kind of
accuracy obtainable by the use of z, let us take the
case that has already been treated by an exact method
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in Ex. 27. A correlation of — 629 has been obtained
from 20 pairs of observations ; test its significance.

For # = —+629 we have, using either a table of
natural logarithms, or the special table for z, s= — -7398.
To divide this by its standard error is equivalent to
multiplying it by +/17. This gives —3-050, which we
interpret as a normal deviate. From the table of{
‘normal deviates it appears that this value willche
exceeded about 23 times in 10,000 trials. The" true
frequency, as we have seen, is about 30 gimes in
10,000 trials. The error tends only slightly to
exaggerate the significance of the resulf)

Ex. 30. Further lest of ithe @rma/zz‘y of the
distribution of 2.—A partial correldtion +-457 was
obtained from a sample of 32 4ftér eliminating two
variates. Does this differ s.lg‘mﬁcantly from zero?
Herez = 4935 ; deductingthe two eliminated variates
the effective size of the sdintple is 30, and the standard
error of 2 is 1/4/27 ; multiplying # by V27, we have as
a normal variate 3*}3‘4 Table I (or the bottom line
of Table 1V) shiews; as before, that P is just over -o1.
There is a slight exaggeration of significance, but it is
even slighfer‘than in the previous example.

These\examples indicate that the z transformation
will give a variate which, for most practical purposes,
may\be taken to be normally distributed. In the

. €ase of simple tests of significance the use of the Table

\ Jof £1is to be preferred ; in the following examples this

method is not available, and the only method available

which is both tolerably accurate and sufficiently rapid
for practical use lies in the use of 2.

- Ex. 31. Significance of deviation from expectation

of an observed correlation coefficient—In a sample of

25 pairs of parent and child the correlation was found
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to be *60. Is this value consistent with the view that
the true correlation in that character was 46 ?

The first step is to find the difference of the corre-
sponding values of z. This is shown in Table 33.

To obtain the normal deviate we multiply by /22,
and obtain -918. The deviation is less than the
standard deviation, and the value obtained is therefore,
quite in accordance with the hypothesis.

A
N 3

TABLE 33 N\
7. ,:f‘t\\ }
Sample value . . 6o X égl
Population value . . 46 ¢ t\\J 4973
Difference . . :\\\‘;\: 1958

Y

Ex. 32. Sz;gm_'ﬁmme‘;éf:’ difference between two
observed corvelations—Qb two samples the first, of
20 palrs, gives a ca(l&elétion -6, the second, of 25
pairs, gives a corrgl?tion -8 : are these values signi-
ficantly different®>

In this cade)we require not only the difference of
the values of.%, but the standard error of the difference.
The vaacishi’(':e of the difference is the sum of the
recip@éiﬂs of 17 and 22 ; the work is shown below.

N,
NS

\‘ 3 TABLE 34
\ } 8 z. #'—3. | Reciprocal.
st sample . | 60 6931 17 05882
] .
end sample . 8o 1-0580 22 04545
Difference . ‘4055473230 | Sum . | -rIo427
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The standard error which is appended to the
difference of the values of # is the square root of the
variance found on the same line. The difference does
not exceed twice the standard error, and cannot there-
fore be judged significant. There is thus no sufficient
evidence to conclude that the two samples are not.
drawn from equally correlated populations. '\\

Ex. 33. Combination of values from small samples.

- ~—Assuming that the two samples in the last exampl
were drawn from equally correlated popiilations,
estimate the value of the correlation. O\ °

The two values of # must be givex}‘i’veight in-
versely proportional to their varlance ‘We therefore
multiply the first by 17, the secorﬁi 'by 22 and add,
dividing the total by 39. Thi8)gives an estimated
value of z for the popu[atlon,‘and the corresponding
value of » may be found from the table.

,?ABLE 33
- i\ r. g w—1. {n'—3)z. ‘
b A B |
1st sample ., " O -60 -6931 17 117827
znd sample \ N (9 1'0y86 22 241692 ‘
w\.) i
..\ -7267 "9218 39 359519 |

T\he weighted average value of # 1s 9218 to whlch
T:Oi‘responds the value » = +7267; the value of #z so
\ Jobtained may be regarded as subject to normally
distributed errors of random sampling with variance
equal to 1f39. The accuracy is therefore equivalent
to that of a single value obtained from 42 pairs of
observations. Tests of significance may thus be
applied to such averaged values of 2, as to individual
values.
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36. Systematic Errors

In connexion with the averaging of correlations
obtained from small samples it is worth while to
consider the effects of two classes of systematic errors,
which, although of little or no importance when single
values only are available, become of increasing im-

portance as larger numbers of samples are averaged!

The value of 2z obtained from any sample is(@n
estimate of a true value, {, belonging to the s 'rripled
population, just as the value of » obtained’from a
sample is an estimate of a population valug, p. If the
method of obtaining the correlation weére free from
bias, the values of # would be normially distributed
about a mean Z, which would ag?e;é: in value with .
Actually there is a small bias which makes the mean
value of 2z somewhat greaté numerically than {;
thus the correlation, whethet positive or negative, is
slightly exaggerated. (This bias may effectively be
corrected by subtracth\lg from the value of z the
correction K™ p

oY 2(n'—1)
PN\?

For sigg{é’samples this correction is unimportant,
being: sQ(aH compared to the standard error of 2. For
example, if #' = 10, the standard error of 5 15 -378,
whifé*the correction is p/18 and cannot exceed -056.
If) however, 5 were the mean of 1000 such values of 2,
derived from samples of 10, the standard error of z
is only o012, and the correction, which is unaltered by
taking the mean, may well be of great importance.

The second type of systematic error is that intro-
duced by neglecting Sheppard’s adjustment. In calcu-
lating the value 2, we must always take the value of
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» found without using Sheppard’s adjustment, since
the latter complicates the distribution.

But the omission of Sheppard’s adjustment intro-
duces a systematic error, in the opposite direction to
that mentioned above ; and which, though normally
very small, appears in large as well as in small samples._
In the case of averaging the correlations from a numbef\
of coarsely grouped small samples, the average s shéeuld
be obtained from values of 7 found without Shegpard’s
adjustment, and to the result a correction, rge{{résenting
the average effect of Sheppard’s adjustm\érﬁ, may be
applied. V
37. Correlation between Qg}'ies

The extremely useful case in Wh%h it is required to
find the correlation between l;:'\\\\"O\:Sel'ieS of quantities,
such as annual figures, arranged in order at equal
intervals of time, may bewegarded as a case of partial
correlation, although iftmay be treated more directly
by the method of fiing curved regression lines given
in Section 27 {p,@47). '

If, for engn}le, we had a record of the number
of deaths frowi a certain disease for successive years,
and wished to study if this mortality were associated
with meteorological conditions, or the incidence of
some other disease, or the mortality of some other age -

roup, the outstanding difficulty in the direct applica-
gion of the correlation coefficient is that the number
of deaths considered probably exhibits a progressive
change during the period available. Such changes
may be due to changes in the population among which
the deaths occur, whether it be the total population
of a district, or that of a particular age group, Or
to changes in the sanitary conditions in which the
population lives, or in the skill and availability of
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medical assistance, or to changes in the racial or
genetic composition of the population. In any case,
it is usually found that the changes are still apparent
when the number of deaths is converted into a death-
rate on the existing population in each year, by which
means one of the direct effects of changing population
is eliminated.

If the progressive change could be representzj:“d:"

effectively by a straight line it would be sufficientté
consider the #Zime as a third variate, and to e]irﬁ;fﬁate
it by calculating the corresponding partial cp{’f&ation
coefficient. Usually, however, the changews not so
simple, and would need an expressior}\involving the
square and higher powers of the time‘adequately to
represent it. The partial correlation’ required is one
found by eliminating not onlyy, ‘but 2, £, 8 ...,
regarding these as separate_wariates; for if we have
eliminated all of these upfo* (say) the 4th degree, we
have incidentally elimihated from the correlation
any function of the\’tj}ne of the ath degree, includ-
ing that by which\the progressive change is best
represented. )

This partial torrelation may be calculated directly
from the (;@'g.%’ﬁcients of the regression function obtained
as in ‘Séstfon 28 {p. 151). If ¥ and 3" are the two
quangities to be correlated, we obtained for y the co-

efff(;?eflts A, B, C, . . ., and for ¥ the corresponding
Seéfficients A’, B, C', . ..; the sums of the squares of

the deviations of the variates from the curved regres-
sion lines are obtained as before, from the equations

L !2_
S(y—Y)2 =5(8—n'A? — ’i'(nxz—l) Bi—.
P2
S(j«"——Y’)g = §(y'H—n' A% — ?ﬂ_._l) B2— . | .

Iz
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while the sum of the products may be obtained from

the similar equation

S{ly—Y) (' =Y} = S )—nAn— T g

I2

the required partial correlation being, then,
S{y—Y) (¥ =Y} \ﬁ\

T V=Y %

. . ¥e)
In this process the number of variates elimihated

S=YR )

' is equal to the degree of # to which the ﬁttixn,g;\ﬁas been
carried ; it will be understood that both-%dfiates must
be fitted to the same degree, even i one of them is

capable of adequate represent
degree than is the other.

%
«

ation/py’a curve of lower

\/

&
O

TABLE]
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TABLE V.A.—VaLUues oF THE CORRELATION COEFFICIENT
FOR DIFFERENT LEVELS OF SIGNIFICANCE

209

|
u P=. Q5 oz, i oI.
| !
1 -98769 996917 | -9995066 9998760 \’
2 -DOCOo 95000 -g8ooo *990000
3 -8034 -8783 “93433 . 387,3
4 7203 %:38 V't 8822 -917\20
5 <6694 7545 ' -8329 8745
6 621} yohy 788 (¥8343
7 -5822 -6664 7498 ARNI0TT
8 “5494 6319 “7I55 (o 7646
| 5214 -boz1 685 B AN 7348
1o 4973 "5760 -65£{r \ 7079
11 4762 ‘5529 | \6539 6835
12 4575 ‘5324 MN\wbrzo 6614
3 *4409 "5139 o\ M 5923 6411
14 4259 1 4973 8% |  -5742 6226
15 4124 3 -4&?1~ 557 ‘6055
16 -4000 4883 5425 5897
1y -3887 ..\-2:555 +5285 5751
18 -3783 \‘\ 4438 “5153 5614
19 -3687 (N[ -4329 *5034 -5487
;20 359{\ 4227 *4921 -5368
! l
25 3233 +3809 4451 -4869 I
3o |\v2960 *3494 *4003 4487
35 (N7 2746 -3246 3810 4182
Qs“‘;‘ 2573 *3044 -3578 3932
45 2428 2878 -3384 3721
A\ 2306 2732 3218 3541
AN 6o 2108 2500 2048 3248
N\ o *1954 2319 2737 3017
N/ 8o - 1829 2172 2565 2830
go ~1726 3050 2422 2673
160 -1638 1946 *2301 2540

/7

For a total correlation, # is 2 less than the number of pairs in the
sample ; for a partial correlation, the number of eliminated variates also

should be sgbtra.cted.
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VII

INTRACLASS CORRELATIONS AND THE "
ANALYSIS OF VARIANCE N
38. A type of data, which 1s of very common oc“CTur““x
rence, may be treated by methods closely analogous
to that of the correlation table, while at the gasne time
it may be more usefully and accurately txéated by the
analysis of variance, that is by the separation of the
variance ascribable to one group of /eduses from the
variance ascribable to other grougs,” We shall in this
chapter treat first of those cases, ‘arising in biometry, in
which the analogy with the edrrelations treated in the
last chapter may most usgfully be indicated, and then
pass to more general cases, prevalent in experimental
results, in which the{treatment by correlation appears
artificial, and in whieh the analysis of variance appears
to throw a reahlight on the problems before us. A
comparisom@f the two methods of treatment illustrates
the general'principle, so often lost sight of, that tests of
signiﬁc{iifié'e, in so far as they are accurately carried
out, a;r\e bound to agree, whatever process of statistical
reduction may be employed.
\‘ “If we have measurements of #’ pairs of brothers,
we may ascertain the correlation between brothers in
two slightly different ways. In the first place we may
divide the brothers into two classes, as for instance
elder brother and younger brother, and find the corre-
lation between these two classes exactly as we do with
parent and child. If we proceed in this manner we

211
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shall find the mean of the measurements of the elder
brothers, and separately that of the younger brothers.
Equally the standard deviations about the mean are
found separately for the two classes. The correlation
so obtained, being that between two classes of measure-
ments, is termed for distinctness an interclass correla-
tion. Such a procedure would be imperative if the
quantities to be correlated were, for examplef the
ages, or some characteristic sensibly dependent tipon
age, at a fixed date. On the other hand, e amay not
know, in each case, which measurement E:Ibngs to the
elder and which to.the younger brother, or, such a
distinction may be quite irrelevant IQ0ur purpose ; in
these cases it is usual to use a copimon mean derived
from all the measurements, a{'ﬁ‘d‘:a common standard
deviation about that mean \If 2y, 235 2s, %55 .. 5
Xy, X . are the pa.lrs af ‘measurements given, we
calculate

f;§§sw+ﬁm
NG

N ; (S(e— 224 S 2,

2, "_
\u mﬁ

%...:

«\ When this is done, 7 is distinguished as an intra-
"‘class correlation, since we have treated all the brothers
\ ’ as belonging to the same class, and having the same
mean and standard deviation. The intraclass correla-
tion, when its use is justified by the irrelevance of any
such distinction as age, may be expected to give a more
accurate estimate of the true value than does any of
the possible interclass correlations derived from the
same material, for we have used estimates of the mean

S{(x—2#) (&' — %)}
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and standard deviation founded on 2#° instead of
, T

on 7 values. This is in fact found to be the case;
the intraclass correlation is not an estimate equivalent
to an interclass correlation, but is somewhat more
accurate. The error distribution is, however, as we
shall see, affected also in other ways, which require the
intraclass correlation to be treated separately.

The analogy of this treatment with that of inter(’
class correlations may be further illustrated by the

construction of what is called a symmetrical ~t’a,b’1'
Instead of entering each pair of observatipfis* once
in such a correlation table, 1t is enteredy tﬁqce the
co-ordinates of the two entries being, \for instance,
{#y, 1) and (#'y, #,). The total entfies’ in the table
will then be 2#', and the two margihal distributions
will be identical, each representing’the distribution of
the whole 27' observations. oiThe equations given,
for caleulating the intraclags r:orrelanon bear the same
relation to the symmetrlcal table as the equations for
the interclass correlation bear to the corresponding
unsymmetrical tablewith »’ entries. Although the
intraclass correldtion 1s somewhat the more accurate,
it is by no meals so accurate as is an interclass correla-
tion with 2z0ihdependent pairs of observations.

Thedontrast between the two types of correlation
becomss more obvious when we have to deal not with
pau's, “but with sets of three or more measurements ; 5
oy ¢xample, if three brothers in each family have been
measured. In such cases also a symmetrical table
can be constructed. Each trio of brothers will pro-
vide three pairs, each of which gives two entries, so
that each trio provides 6 entries in the table. To
calculate the correlation from such a table is equivalent
to the following equations :
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F= é Sle+x"+27),

6’2

:-;;3 S{(x—:f)z-}—(x’—:f)a—E—(x”-—:?:)ﬁ},

r = 3—;&-2 S{(2' —%) (2" —B)+(z"—%) (x—F) +{x— %) (x'—f)}i.
N
In many instances of the use of intraclassicor-
relations the number of observations in they same
“ family " is large, as when the resemblangé, between
leaves on the same tree was studied by pickiﬁg 26 leaves
from a number of different trees, or sehen 100 pods
were taken from each tree in anothgt group of cor-
relation studies. If £ is the nupiber in each family,
then each set of £ values will’ppovide £2(£—1) values
for the symmetrical table, whieh thus may contain an
enormous number of entries, and be very laborious to
construct. To obviate,tbié difficulty Harris introduced
an abbreviated method of calculation by which the
value of the cdrrg:l%,fion given by the symmetrical table
may be obtdited directly from two distributions:
(i) the distribution of the whole group of 42’ observa-
tions, {rpai/which we obtain, as above, the values of
% and(sy (i) the distribution of the # means of
families. If #, %, . . ., %,, represent these means
eg,?;h dertved from £ values, then

J kS(Zy— %) = ns¥14-(h—1)7}

is an equation from which can be calculated the value
of 7, the intraclass correlation derived from the sym-
metrical table. It is instructive to verify this fact,
for the case £ = 3, by deriving from it the full formula
for 7 given above for that case.

One salient fact appears from the above relation :



§ 39] INTRACLASS CORRELATIONS 218

the sum of a number of squares, and therefore the
left hand of this equation, is necessarily positive.
Consequently » cannot have a negative value less than
—1/(£—1). There is no such limitation to positive
values, all values up to 41 being possible. Further,
if £, the number in any family, is not necessarily less
than some fixed value, the correlation in the population "\
cannot be negative at all. For example, in card games{
where the number of suits 15 limited to four, the cofre:
lation between the number of cards in diﬁ'erel(‘f‘spits
in the same hand may have negative values down to
—4; but there is probably nothing in the prcé‘uction of
a leaf or a child which necessitates that.the number in
such a tamily should be less than anyfdimber however
great, and in the absence of suchi& necessary restric-
tion we cannot expect to findy negative correlations
within such families. This igitn the sharpest contrast
to the unrestricted occurfence of negative values
among interclass corre'latib‘ns, and it is obvious, since
the extreme limits of"\‘{sa\riation are different in the two
cases, that the disteibittion of values in random samples
must be correspSudingly modified.
2N
A -
39, Sampling Errors of Intraclass Correlations

ThHe ‘case 4 = 2, which is closely analogous to an

intetelass correlation, may be treated by the trans-
\"(B‘rfhation previously employed, namely

z = Hlog (1+»)—log (1 —7)};

z is then distributed very nearly in a normal distribu-
tion, the distribution is wholly independent of the
value of the correlation p in the population from
which the sample is drawn, and the variance of z
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consequently depends only on the size of the sample,
being given by the formula

I
BT
The transformation has, therefore, the same

advantages in this case as for interclass correlations:
It will be observed that the slightly greater accura}y
of the intraclass correlation, compared to an mr.erclass
correlation based on the same number of} p‘a,lr:,, 1s
indicated by the use of ' — 3/2 in place of';v:\—g The
a.dvantage is, therefore, equivalent to ‘il additional
pairs of observations. A second d1ﬂerence lies in the
bias to which such estimates are Sub_]ect For inter-
class correlations the value fOli{ld i samples, whether
pOSItIVB or negative, is exaggerated to the extent of
requiring a correction, QY

e

3 2(?z _I)!
to be apphed to the average value of 2. With intra-
class correlatibiis the bias is always in the negative

direction, and 15 independent of p; the correction

7
neceSSa;\Y 'in these cases being +1 log , Or,
-—1

I
apR%mmately, T“z"‘m. This blas is- characteristic

~ bf mtraclass correlations for all values of 4, and
) arises from the fact that the symmetrical table does
not provide us with quite the best estimate of the
correlation,
The effect of the transformation upon the error
curves may be seen by comparing Figs. 9 and 10.
Fig. 9 shows the actual error curves of » derived from a
symmetrical table formed from 8 pairs of observations.
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drawn from populations having correlations o and 0-8.
Fig. 10 shows the corresponding error curves for the
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distribution of 2. The three chief advantages noted
in Figs. 7 and 8 are equally visible in the comparison
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of Figs. g and 10. Curves of very unequal variance
are replaced by curves of equal variance, skew curves
by approximately normal curves, curves of dissimilar
form by curves of similar form. In one respect the
effect of the transformation is more perfect for the
intraclass than it is for the interclass correlations, for,
although in both cases the curves are not preciseh\{
normal, with the intraclass correlations they  are
entirely constant in variance and form, whereay ~w1th
interclass correlations there is a slight variationin both
respects, as the correlation in the populatlo,n‘ﬁ varied.
Fig. 10 shows clearly the effect of the bigsintroduced
in estimating the correlation from the“symmetrical
table ; the bias, like the other featuses of these curves,
is absolutely constant in the scalgof 2.

Ex. 34. Accuracy of an oé.femed intraclass cor-
relation.—An intraclass Cofrelatlon -6000 1s derived
from 13 pairs of obsewatmm estimate the correlation
in the population from Which it was drawn, and find
the limits within whfs}i It probably lies.

Placing the ¥4lites of # and # in parallel columns,
we have ¢

\&" TABLE 36
S
& v, .
O\\
«\} Calculated value . . 6ooo + -6o31
%1 Correction . . L —[— ‘0400
N\ Estimate . ; . +-6250 + 7331
N/ Standard error . . 4 <2049
Upper limit . . . 48673 +1 3220
Lower Himit . . . 41423 "1433 t
. |

The caleulation is carried through in the # column,
and the corresponding values of » found as required
from the Table V.B. (p. 210). The value of 7 is
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obtained from the symmetrical table, and the corre-
sponding value of # calculated. These values suffer
from a small negative bias, and this is removed by
adding to z the correction ; the unbiased estimate of 2
is therefore 7331, and the corresponding value of 7,
6250, is an unbiased estimate, based upon the sample,
of the correlation in the population from which then
sample was drawn. To find the limits within which th1§*
correlation may be expected to lie, the standard é&r'ror
of z is calculated, and twice this value is added and
subtracted from the estimated value to o@tam the
values of z at the upper and lower lithits. From
these we obtain the corresponding values of ». The
observed correlation must in this\\c'ase be judged
significant, since the lower limit. 3, Positive; we shall
seldom be wrong in concludiftg” that 1t exceeds -1
and 1s less than -87. N ¢

The sampling errors! Yor the cases in which 4
exceeds 2 may be more satlsfactorrly treated from the
standpoint of the apalysis of variance ; but whenever
it is preferred tolthink in terms of correlation, it is
possible to use “ah analogous transformation suitable

for all values of 2. Let

.\'*’ =%log I+('é,,),

a tré %formatmn which reduces to the form previously
Qséd when 2 = 2. Then, in random samples of sets of
“\# observations the distribution of errors in z is inde-
N pendent of the true value, and approaches normality
as 7’ is increased, though not so rapdily as when £ = 2.
The variance of z may be taken, when #' is sufficiently

large, to be approximately
4
2(k~—1) (' —2)
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To find 7 for a given value of 7z in this transforma-
tion, Table V.B. may still be utilised, as in the
following example.

Ex. 35. Extended use of Table V.B~—Find the
value of 7 corresponding to z = 41:0605, when

== 100. . O\

First deduct from the given value of z half the\\
natural logarithm of (£#—1); enter the difference ‘a8
“2” in the table and multiply the corresponding
value of “»” by £; add £—2 and divide byéé‘(ié~ 1).

The numerical work is shown below \s
TABLE 37 O )
2o . I robos
tlog (A—1) = log g9 . e 22975
. \S,
-k . . . . L _{:v ) -—1-2370
g 2 . . . : ::“ . _'8446
‘é“r” = 100 tsru "':.“ . . —84‘46
E—2 . . . Qv,}’,‘ . . 08
Fa -

2r{k—1) = 198?.'.\\ . . . 13-54
e y <\,a’ . . + 0684

Ex. 36. Significance of intraclass correlation
from large smpples—A correlation + 0684 was found
between the ™ ovules failing ” in the different pods
from thé-same tree of Cereds Canadensis. 100 pods
were\taken from each of 6o trees (Harris’s data).
[s(this a significant correlation ?

\J As the last example shows, # = 1-0605; the
standard error of # is “0933. The value of z exceeds
its standard error over 11 times, and the correlation is
undoubtedly significant.

When #’ is sufficiently large we have seen that,
subject to somewhat severe limitations, it is posstble
to assume that the interclass correlation is normally
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distributed in random samples with standard error

2

1—p
Vu'—1
The corresponding formula for intraclass correlations,
using #£ in a class, is ' .
N
(r—=pH1 +{£—1)p} O
'\/é‘é(é " I—)? . sn’; n” 3

The utility of this formula is subject to evgz&;”}nore
drastic limitations than is that for the (ifterclass
correlation, for #' is more often small.\Ja’ addition,
the regions for which the formula is inapplicable, even
when #’ 1s large, are now not in\t,béneighbourhood
of 4-1, but in the neighbourhogdﬁ,g‘f. 41 and ﬁé%l‘
When 4 is large the latter \approaches zero, so that
an extremely skew distribution for » is found not
only with high correlations but also with very low
ones. It is thereforg‘hot usually an accurate formula
to use in testingsignificance. This abnormality in
the neighbourhégd of zero is particularly to be noticed,
since it is omly™in this neighbourhood that much is to
be gained By taking high values of £ Near zero, as
the formala above shows, the accuracy of an intraclass
corqe[a.\tion 1s with large samples equivalent to that of
343 — 1)’ independent pairs of observations ; which
“gives to high values of £ an enormous advantage in
accuracy. For correlations near 5, however great £
be made, the accuracy is no higher than that obtain-
able from o9#'[2 pairs; while near 41 it tends to be
no more accurate than would be »’ pairs.
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40. Intraclass Correlation as an Example of the Analys:s
of Variance

A very great simplification is introduced into
questions involving intraclass correlation when we
recognise that in such cases the correlation merely.
measures the relative importance of two groups, of
factors causing variation. We have seen that in'the
practical calculation of the intraclass correlation we
merely obtain the two necessary quanntles\é?zﬂ and
mﬁ{r—l—(:%—l)r}, by equatmg them tQ Dthe two
quantities

§(x—f)2, é?(f wazﬁ*’
O

of which the first is the sum of the squares (&' 1
number) of the deviations of\2ll the observations from
their general mean, and, ‘r,h~e second 1s £ times the sum
of the squares of thq 7 deviations of the mean of
each family from-the general mean. Now it may
easily be shown'that

A
p 3

5(2:—&:5)2 éS(x,,—x)g-{—S(x—x,,)
N '\

in which the last term is the sum of the squares of

the\deviations of each individual measurement from

_thé mean of the family to which it belongs. The
\, following table summarises these relations by showmg

the number of degrees of freedom involved in each

case, and, in the last column, the interpretation put

upon each expression in the calculation of an intraclass

correlation from a symmetrical table.
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TABLE 38
: : ]:i}“(;g:l?r;f Sum of Squares.
. - A
Within families .| #lE—1) S{x—x,)® ns¥p—1){1—7)
I
H ' A
Between families . w—1 ES(Fp—2) | me{14-(h—1)r},
I i"i}
Total 7 o) 2 N ”
otal . .| wAE—1 ERtd ns !
: ON
¢

"

It will now be observed that 2 of the preceding
section is, apart from a constant, half the difference of
the logarithms of the two parts 1nt\é)\whlch the sum of
squares has been analysed. The fact that the form
of the distribution of # in gaiidom samples is inde-
pendent of the correlatlonjef ‘the population sampled,
is thus a consequence,of the fact that deviations of
the mdividual observa,\ﬁons from the means of their
families are mcz’e;?e%dmz of the deviations of those
means from the{general mean. The data provide us
with independént estimates of two variances ; if these
variances, &fe equal the correlation is zero; if our
estlmate\@\“do not differ significantly the correlation
is 11151.g\mﬁcant If, however, they are significantly
different, we may if we choose express the fact in terms
‘fa correlation.

The interpretation of such an inequality of variance
in terms of a correlation may be made clear as follows,
by a method which also serves to show that the inter-
pretation made by the use of the symmetrical table is
slightly defective. Let a quantity be made up of two
parts, each normally and independently distributed ;
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let the variance of the first part be A, and that of the
second part B ; then it is easy to see that the variance
of the total quantity is A+B. Consider a sample of
#' values of the first part, and to each of these add a
sample of £ values of the second part, takmg a fresh
sample of £ in each case. We then have #' families of
values with % in each family. In the infinite populatioh
from which these are drawn the correlation betweéen
pairs of members of the same family will be \ OV
A o
P = m - y .\ W
~ From such a set of 4% valogs we may make
estimates of the values of A aad B, or in other words
we may analyse the variance(into the portions contri-
buted by the two causes, “the intraclass correlation
will be merely the fracuon of the total variance due
to that cause which dbservations in the same family
have in common, {The value of B may be estimated
directly, for vafiation within each family is due to this
cause alone ¢onsequently
\ i En
\ S(:t:—a?jc,)2 = n'(#—1)B.
'ﬁ”he mean of the observauons in any fam11y is
\made up of two parts, the first part with variance A,
“and a second part, which is the mean of £ values
of the second parts of the individual values, and
has therefore a variance B/£; consequently from
the observed variation of the means of the families,
we have

"

ES(E,—i)* = (n'—1) (RA+B).

Table 38 may therefore be rewritten, writing in the
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last column s2 for A+ B, and 7 for the unbiased
estimate of the correlation.

TABLE 139
Degrees of Sum of
Freedom. Squares.
En" ~
Within | #(i—1) | S(r—2,)? (1B = w2—1)i—)

families

Between #w—1 38(5,,,——::3)2 (" —1)(EA+B) = (»— 1)1 + S I)r:}’
families ' N

%
7 %3

b AN 3
Total | #b—1 | St~ | /—1EA+(E—DB =(’{u§—:—@—x)r}

>

Comparing the last column withithat of Table 38

it is apparent that the diﬁ‘erché Arises solely from
putting #' for # in the first ling’and #'—1 for » in the
second ; the ratio between theisums of squares isaltered

in the ratio ' : (#'—1), W}’liCh precisely eliminates the
negative bias observediih z derived by the previous
method. The error™ of that method consisted in
assuming that thé total variance derived from 7' sets
of related individials could be accurately estimated by
equating the sum of squares of all the individuals from
their meq‘ri,' to ns2£ just as if they were all unrelated ;
this exror’is unimportant when #’ is large, as it usually

is v(&n % = 2, but with higher values of £, data may
.jgfej’of great value even when #' is very small, and in
~JSsuch cases serious discrepancies arise from the use of

"V the uncorrected values.

The direct test of the significance of an intraclass
correlation may be applied to such a table of the
analysis of variance without actually calculating 7.
If there is no correlation, then A is not significantly
different from zero ; there is no difference between the

Q
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several families which 1s not accounted for, as a random
sampling effect of the differences within each family. In
fact the whole group of observations is a homogeneous
group with variance equal to B.

A1, Test of Significance of Difference of Variance

The test of significance of intraclass correlations.
is thus simply an example of the much wider classef
tests of significance which arise in the anal{§is of
variance. These tests are all reducible to he “single
problem of testing whether one estimatx’e}‘ varlance
derived from #, degrees of freedom 8 significantly
greater than a second such estimate derived from 7,
degrees of freedom. This probl.eth\is reduced to its
simplest form by ca]culatingz'}‘zsi equal to half the
difference of the nafural logarithms of the estimates
of the variance, or to the.difference of the logarithms
of the corresponding standard deviations. Then if P
1s the probability of,Qxcéeding this value by chance, it
is possible to caLcy}ate the value of z corresponding
to different values of P, #,, and 7,.

A full tabledof this kind, involving three variables,
would belVery extensive; we therefore give tables
for thre@especially important values of P, and for
a nuﬁib’ér of combinations of 7, and #,, sufficient to
indi&te the values for other combinations (Table VI,

~Pb. 242-247). We shall give various examples of the
use of this table. When both #; and #, are large,
and also for moderate values when they are equal or
nearly equal, the distribution.of z is sufficiently near
normal for effective use to be made of its standard
deviation, which may be written

- \@(ﬁﬁﬂlﬁ).
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This includes the case of the intraclass correlation,
when £ = 2, for if we have »’ pairs of values, the varia-
tion between classes is based on # —1 degrees of
freedom, and that within classes is based on »’ degrees
of freedom, so that

m=n—1, ng=mn, \\‘
and for moderately large values of #’ we may take 2)
to be normally distributed as above explained. When'

£ exceeds z we have

<

R
R
these may be very unequal, so that unlessv’ be quite
large, the distribution of z will be p&toeptlbly asyim-

metrical, and the standard devm\lqn will not provide
a satisfactory test of mgmﬁcance v

Ex. 37. Sex difference im\variance of stature.—

From 1164 measurements Q’f males the sum of squares
of the deviations was fodnid to be 83g0; while from
1456 measurements of Jemales it was 9870 : is there a
significant diﬂ'ererQé:,in absolute variability ?

no=n'—1, nyg=_k—1n";

N\ TABLE 40

Deé;r}:e’s of | Sum of | Mean | Log (Mean
¢Freedom, | Squares. | Square. | Square).

W

HEA

Men \\ 1163 8rg0 7+386 1'999H laretotiftet.d
W Women 1455 gBy0 6-783 1-G145 -0006873

Difference -0851 | Sum -0015471

The mean squares are calculated from the sum of
squares by dividing by the degrees of freedom ; the
difference of the logarithms is *0851, so that z is 0426.
The variance of z is half the sum of the last column,
so-that the standard deviation of # is -02781. The
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difference in variability, though suggestive of a real
effect, cannot be judged significant on these data.

Ex. 38. Homogeneity of small samples.—In an
experiment on the accuracy of counting soil bacteria,
a soil sample was divided into four parallel samples,
and from each of these after dilution seven plates Werge\
inoculated. The number of colonies on each plats.i
shown below. Do the results from the four sq.nili:ﬂés
agree within the limits of random sampling® In
other words, is the whole set of 28 values ho;‘r\&géneous,
or is there any perceptible intraclass cqrx:efai‘.’ion ?

TABLE 41
N\
Sample.’>
Plate. O
L L (H" L Iv.

I 72 2 78 69

2 69 48872 74 67

3 63 A 70 70 66

4 solM ] 69 58 64

5 500 66 58 62

6 s 58 56 58 |

7 ) st 52 56 54

A/
Total{ ». | 426 401 4850 440
Me@n . 6o 86 6586 64° 28 62-86
}"“: . i
«From these values we obtain
. o TABLE 4z
!
\ [ Degrees of | Sum of | Mean S.D. |LogS.D. [

Freedom, | Squares. | Square,

Within classes . 24 1446 6oe25 | 7762 | 20493

Between classes . 3 o496 | 31-65 | 5626 | 1-7274
_.3219

Total . . 27 1540°96| 5707 | 753
. {Difference)=z
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The variation within classes is actually the greater,
so that if any correlation is indicated it must be
negative. The numbers of degrees of freedom are
small and unequal, so we shall use Table VI. This
is entered with #, equal to the degrees of freedom
corresponding to the larger variance, in this case 24 ;

also, 7, = 3. Thetable gives 1-0781 for the 5 per cent..
point ; so that the observed difference, *3219, is really
very moderate, and quite insignificant. The wholsSet"

of 28 values appears to be homogeneous with vamahce
about 57-07. \\ ’

It should be noticed that if only two sa}nples had
been present, the test of homogeneity would have been
equlvalent to testing the significance ok, as explamed
in Chapter V. In fact the valuegsfor 7, = 1 in the
table of z (p. 242) are nothing kot the logarithms of
the values, for P=-05and - 0%yl in the Table of 2(p. 174).
Similarly, the values for %= 1 in Table VI are the
logarithms of the reciprocals of the values, which would
appear in Table IV {under P = 95 and -gg. The
present method mﬁ?‘r be regarded as an extension of
the method of, Chapter V, appropriate when we
wish to compgaré more than two means. Equally it
may be regatrded as an extension of the methods of
Chapte\ YV, for if #, were infinite z would equal

-} log\z’?—iL of Table III for P = -o05 and -or, and if #,

\Were infinite it would equal —}% iog *for P = -g5 and

-99. Tests of goodness of fit, in whlch the sampling
variance is not calculable & priors, but may be esti-
mated from the data, may therefore be made by
means of Table VI. (See Chap. VIIL)

Ex. 39. Comparison of intraclass corvelations.—
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The following correlations are given (Harris’s data)
for the number of ovules in different pods of the same
tree, 100 pods being counted on each tree (Cereis
Canadensis) : :

Meramec Highlands . . 60 trees + -3527

Lawrence, Kansas . . 22 trees + 3999 \\*

Is the correlation at Lawrence significantly gredser
than that in the Meramec Highlands ? s ’

First we find 7 in each case from theormula

5 = H{log (1 +-99r)~log (1 —)} D>

(p. 219) ; this gives 2=2-0081 for Meramec and 2-1071
 for Lawrence ; since these were obtaingd by the method

of the symmetrical table we sh&ll insert the small

correction 1/(2'—1) and obtath3-0165 for Meramec,

and 2-1304 for Lawrence, .:;ts.‘:‘tHe values which would

have been obtained by thesmethod of the analysis of

variance. N\

To ascertain to/what errors these determinations
are subject, consider first the case of Lawrence, which
being based gn“only 22 trees is subject to the larger
errors.  Weshave sy =21, n,—22 X99=2178. These
values aréyfhot given in the table, but from the
value:fg} 7, = 24, 7, = o0 it appears that positive
errorgvexceeding 2085 will occur in rather more
than' 5 per cent. of samples. This fact alone settles

~lthe question of significance, for the value for
'Lawrence only exceeds that obtained for Meramec
by 1139. .

In other cases greater precision may be required.
In the Table for 2 the five values 6, 8, 12, 24, o are
chosen for being in harmonic progression, and so
facilitating interpolation, if we use 1/z as the variable.
If we have to interpolate both for 7, and #,, we proceed
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in three steps. We find first the values of 2 for 7z, = 12,
ny = 2178, and for #, = 24, 7, = 2178, and from these
obtain the required value for 7, = 21, 7, = 2178,
To find the value for 2, =12, #,= 2178, observe that
2178 ‘0275,
for 7, = o we have +2804, and for 7, = 60 a Valus\\\
higher by 0450, so that -2804+ 0275 X *0450 = 2816
gives the approximate value for #, = 2178. )
Similarly for #, = 24 \.
2085402745 X 0560 = -2101. \s
From these two values we must ﬁnd the value for
#p = 21 ; NOW \“
o r\ N
ErE T3 j‘

so that we must add to the vaifue for #; =24 one-seventh
of its difference from the, value for 7, = 12 ; this gives

N}s 14+ -2 07 o715 _ = +2201,
¢ '\\

which 1s approx:mately the positive deviation which
would be egeéded by chance in 5 per cent. of random

samples\~
Just'as we have found the 5 per cent. point for
posq:\ve deviations, so the g per cent. point for negative
Qe\natmons may be found by interchanging », and 7, ;
\;t’ms turns out to be -2978. If we assume that our
observed value does not transgress the 5 per cent. point
in either deviation, that is to say that it lies in the
central nine-tenths of its frequency distribution, we
may say that the value of z for Lawrence, Kansas,
lies between 1-g101 and 2:4282; these fiducial limits
being found respectively by subtracting the positive
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deviation and adding the negative deviation to the
observed value.

The fact that the two deviations are distinctiy
unequal, as is generally the case when #, and », are
unequal and not both large, shows that such a
case cannot be treated accurately by means of a
probable error, '\\\

Somewhat more accurate values than the above
may be obtained by improved methods of mterpola-
tion; the method given will, however, suffice for all
ordinary requirements, except in the ooshet of the
table where 7, exceeds 24 and #, exceeds}o For cases
which fall into this region, the following formula gives
the 5 per cent. point within one-hiffidredth of its value.
If % is the harmonic mean of&aﬁand 7,5, 50 that
RN\
j‘51 ng

__ 1644 9_ ___1)
then z= e +7843 (”1 po

2
7

)

Similarly, ’ﬂ{é”}l per cent. point i3 given approxi-
mately by the formula

1"\"3—— 2:3263 ( 1)
:"\i.{.\“ ‘\/k-[ 35 ?31 Ha

(For the 0:1% point we may use

AN -0qo2
g — 3-000

11
T Vh—aq U9 (annug)

The modification of the v//£—T1, which is good for
the 5%, point, used for the higher levels of significance,
is due to W, G. Cochran.

Let us apply this formula to find the 5 per cent.
points for the Meramec Highlands, », = 59, %, == 5940
the calculation is as follows :
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TABLE 43
1n 01605 VA1 1076
1/, ooty 1VEi—1 05204  First term  -15288
2/k 01712 Ijmy—1jn,  -01678  Second term ‘01316
1k 00856 Difference . 1397_ .
A 116-8 Sum 1660

The 5 per cent. point for positive deviations is \<
therefore -1397, and for negative deviations "1660¢
with the same standards as before, therefore, we may
say that the value for Meramec lies between .1.-*8768
and 2-1825 with a fiducial probability of go &rcent. ;
the large overlap of this range with that.of %awrence
shows that the correlations found in thejtwo districts
are not significantly different. 1

4z. Analysis of Variance into more bhan Two Portions

It is often necessary to dl\?lde the total variance
into more than two portion§} it sometimes happens
both in experimental andiin observational data that
the observations may Be grouped into classes in more
than one way; ea h.bbservation belongs to one class
of type A and te a different class of type B. In such
a case we cafp find separately the variance between
classes of type A and between classes of type B; the
balance\ xﬁe total variance may represent only the
variance within each subclass, or there may be in
ad@t}on an interaction of causes so that a change in
class of type A does not have the same effect in all

\B classes. If the observations do not occur singly in the
subclasses, the variance within the subclasses may be
determined independently, and the presence or absence
of interaction verified. Sometimes also, for example,
if the observations are frequencies, it is possible to
calculate the variance to be expected in the subclasses.

Ex. 40. Diurnal and annual variation of rain
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frequency.—The frequencies of rain at different hours
in different months (Table 44) were observed at
Richmond during 10 years (quoted from Shaw, with
two corrections in the totals).

The variance may be analysed as follows :

TABLE 43

Degrees of Sum of Mean

Freedom. Squares. Square.
Months I 6,568:58 3 ZM
Hours 23 1,539°33 7B6%28
Remainder 253 3,810:58 \ 15007

Total 287 I 1,927\-59
¢ \

~

N

Z| 3
& W3

The mean of the 288 valu&s‘glven in the table is
24+7, and if the original dat’a had represented inde-
pendent sampling chances; We should expect the mean
square residue to be nearly as great as this, or greater,
if the rain distribution during the day differs in different
months. Clearly.he residual variance is subnormal,
and the reasopfor this is obvious when we consider
that the prebability that it should be raining in the
2nd houg @ not independent of whether it is raining
or not/xthe 1st hour of the seme day. Each shower
willghiis often have been entered twice or more often,
amsl\the values for neighbouring hours in the same

~\month will be positively correlated.
“\“random variation has thus been included in that
ascribed to the months, and probably accounts for
the very irregular sequence of the monthly totals. The
variance between the 24 hours is, however, quite
significantly greater than the residual variance, and
this shows that the rainy hours have been on the
whole similar in the different months, so that the
figures clearly indicate the influence of time of

Much of the
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day. From the data it is not possible to estimate the
influence of time of year, or to discuss whether the
effect of time of day is the same in all months.

Ex. 41. Awnalysts of variation in experimental
Jfreld trials—The table on the following page gives the
yield in Ib. per plant in an experiment with potato@s
(Rothamsted data). A plot of land, the whole Sof
which had received a dressing of dung, was, (fwided
into 36 patches, on which 12 varieties were g‘,rown, each
variety having 3 patches scattered over thexarea. Each
patch was divided into three lines, one of ﬁ?ﬂhlch received,
in addition to dung, a basal dressing only, containing no
potash while the other two recejgetf additional dress-
ings of sulphate and chioride, Qf~potash respectively.

From data of this sort a yariety of information may
be derived. The total yiélds of the 36 patches give
us 35 degrees of freedom, of which 11 represent
differences among the12 varieties, and 24 represent
the differences befween different patches growing the
same variety4{By comparing the variance in these
two classes e tnay test the significance of the varietal
differencedZin yield for the soil and climate of the
experiment. The 72 additional degrees of freedom
gw&n OBy the yields of the separate rows consist of
2 @due to manurial treatment, which we can subdivide
\lnfo one representmg the differences due to a potash

\ \“dressing as against the basal dressing, and a second
representing the manurial difference between the
sulphate and the chloride ; and 70 more representing
the differences observed in manurial response in the
different patches. These latter may in turn be divided
into 22 representing the difference in manurial response
of the different varieties, and 48 representing the
differences in manurial response in different patches
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growing the same variety. To test the significance of
the manurial effects, we may compare the variance in
each of the two manurial degrees of freedom with that
in the remaining 48 ; to test the significance of the
differences in varietal response to manure, we compare
the variance in the 22 degrees of freedom with that in .
the 48 ; while to test the significance of the difference \»
in yield of the same variety in different patches, we)
compare the 24 degrees of freedom representing.the
differences in the yields of different patches gfawing
the same variety with the 48 degrees represefiting the
differences of manurial response on différent patches
growing the same variety. N\

For each variety we shall require the total yield
for the whole of each patch, t;n\és total yield for the
3 patches and the total yield\for each manure; we
shall also need the total yield for each manure for the
aggregate of the 12 varigfies ; these values are given
on page 238 (Table 47

The sum of th€)squares of the deviations of all
the 108 VEL]UES‘FI'&I.I their mean is 71-6g99; divided,
according to patches, in 36 classes of 3, the value for
the 36 patches is 61-078 ; dividing this again accord-
ing to veir\&ties into 12 classes of 3, the value for the
12 vatieties is 43-638. We may express the facts so
f:a".sjé}s follows :

) TABLE 48
\ _\3_"__.._. _— —— P
. Degrees of | Sum of Mean
Variance. Freedom. | Squares. Square. Log (5.0:)

Between varieties . I 436384 3967 6800
Between patches for

same variety . 24 17-4401 727 —+1594
Within patches . 72 10+6204

Total . . 107 71-6989 |
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The value of 2, found as the difference of the loga-
rithms in the last column, is -8484, the corresponding
I per cent. value being about -564 ; the effect of variety
is therefore very significant,

Of the variation within the patches the portion
ascribable to the two differences of manurial treatmefit
may be derived from the totals for the three mapurizl
treatments. The sum of the squares of the\thiee
deviations, divided by 36, is -3495 ; of this the"square
of the difference of the totals for the two_ pﬂ}tafsh dress-
ings, divided by 72, contributes 0584, whilé the square
of the difference between their meddr“and the total
for the basal dressing, dividedoby 54, gives the
remainder, -2911, It is possiblga,"however, that the
whole effect of the dressings Wway not appear in these
figures, for if the differeng §rerieties had responded in
different ways, or to diffe’zient extents, to the dressings,
the whole effect wouldnot appear in the totals. The
70 remaining degrees of freedom would not be
homogeneous.¢ {Fhe 36 values, giving the totals for
each manuding” and for each variety, give us 3§
degrees of.\ﬁ‘eedom, of which 11 represent the differ-
ences ofyatiety, 2 the differences of manuring, and the
remiiﬁjng 22 show the differences in manurial response

No/

of ghe'different varieties. The analysis of this group is

'..Qh‘c’iwn helow :

\ ¥ TABLE 49
Variance due to Degrees of Sum of Meun
Freedom. Squares. Square,
Potash dressing I 2911 -29I1
Sulphate #. chioride . I o584 |° -0384
Differential response of varieties 22 21911 0496
Differential response in patches
with same variety . 48 8:0798 "1683
Total . . o 72 J 10°6204
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To test the significance of the variation observed
in the yield of patches bearing the same variety, we
may compare the value -727 found above from 24
degrees of freedom, with 1683 just found from 48
degrees. The value of 2, half the difference of the
logarithms, is *7316, while the 1 per cent. point is, o
about +394. The evidence for unequal fertility of the N
different patches is therefore unmistakable. AsGs)
always found in careful field trials, local irregu{a‘ritfés
in the nature or depth of the soil materially affect the
yields. In this case the soil irregularity wads ‘perhaps
combined with unequal quality or quantisgof the dung
supplied. A '

There is no sign of diﬂ‘erentia.l\refsﬁonse among the
varieties ; indeed, the difference Between patches with
different varieties is less thansthat found for patches
with the same variety. The difference between the
values is not significant 3% = -2623, while the 5 per
cent. point is about -33,

Finally, the & ety of the manurial dressings tested
is small ; the differénce due to potash is indeed greater
than the valuexfer the differential effects, which we may
now call rafidom fluctuations, but z is only -3427, and
would reqfiire to be about +7 to be significant. With
no toid response, it is of course to be expected, though
notlds a necessary consequence, that the differential

~gffects should be insignificant. Evidently the plants

¢ith the basal dressing had all the potash necessary,
and in addition no apparent effect on the yield was
produced by the difference between chloride and
sulphate ions.

" [TasLE
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TABLE
5 PER CENT. POINTS OF
: —— —
Values
1. 2, 3 4
N \\
I 25421 20479 26870 2\7031
2 145392 14722 4765 iI>4;b7
3 1597 1-1284 TII3% ) *T-103T
4 0212 -gfigo -942:9\\ 3 927z
5 "0441 8777 -Séig' 8236
6 8948 -8188 2970 <7558
7 +8606 TTTT L NeT347 +7080
8 8355 T4TS N -70T4 6723
9 -8163 -724;;'\‘ 6757 6450
10 8012 ) -6553 G232
|\
11 7880 | 46900 | 6387 6635
1z 7788 ‘»'; ‘—6786 I -6z250 5507
13 77030\ 6682 6134 5783
14 76308 | +6594 6036 5077
N 15 268 6518 *5050 3535
= 16 \ 514 6451 -5876 5505
2 1y ¢ '7466 6393 5811 5434
2 18, 7424 6341 *5753 5371
= AbS +7386 6295 -5701 5315
MNao *7352 6254 5654 -5265
x’\\wl
Ny ax 7322 6216 512 5219
'\\"' 22 7204 6182 5574 3178
R\ 23 7260 6151 5540 5140
3 24 7246 6123 5508 5106
2§ 7225 6097 -5478 "3074
26 7205 6073 “5451 "5043
29 7187 .6051 5427 5017
28 7171 6030 -5403 4992
29 7155 “6o1t -5382 4909
30 7141 5994 - *5362 4947
6o 6933 5738 5973 4632
e 6729 5486 4787 4319
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Vi
THE DISTRIBUTION OF =
1
of .
5. G. 8. : 12. 24. .
|
2-7194 27276 27380 | 27484 | 27588 | 2:7693(
1-48c0 1-4808 14819 I-4830 t-4840 14850,
1-0904 1-0953 | 1oSgg . 1084z -0781 1-07
-9168 '9093 8993 | 8885 | -8767 '\‘*35639
-Bogy -7997 -7862 g7ty | 7550, 4Py 7368
+7394 7274 qriz -6931 6729\ [" 10499
6890 6761 6576 6360 D134 -5862
-6525 6378 6175 5945 | \J50%2 -5371
6238 -bo8e -586z 5613 ':'{\-'5324 4979
‘6009 -5843 5611 "5340\ 5035 4657
. N\
5822 5648 | 5406 | q53e6 | 4795 1 4387
-5666 -5487 5234 [NMO4T | 4592 4156
"3535 *3350 5089 4% 4785 4419 "3957
"5423 "5233 4964y 4649 | -4269 3782
-5326 -5131 -.&?55 4532 4138 +3628
5241 15042 &\4 Go 4428 -4022 -34G0
-5166 4964 (1) ~4676 "4337 3919 -3366
“5099 4804\ [ -4h02 4235 3827 -3253
'5040 4832 4335 -4282 “3743 “3151
-4980 .;4?76 4474 -4116 13668 *3957
4938 N -4725 4420 +4055 "3599 2971
4894 31 -4679 4370 | -4001 *3536 2892
4854 4636 4325 “3950 -3478 2818
<4817 4508 | 4283 | -3004 | 3423 | 2749
783 4562 4244 -3862 *3376 -2685
N 4752 "4529 4209 3823 *3330 2625
S ar23 4499 4176 -3786 "3287 -2569
4696 -447I -4140 -3752 3248 2510
4671 4444 4117 -3720 +3211 +2460
4648 4420 -40G0 -3691 3176 2419
4311 4064 <3702 3255 2654 1644
+3974 »3706 3300 2804 -2085 )
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' TABLE

1 PER CENT. PoINTS OF

A\ W

Valucs
1 — l
1 2 3 4
| ‘ ’\i\f
i : " };
1 41535 42585 42974 43175
2 22950 2:20%6 2:2084 ! g }2988
3 i I-7649 7140 1-6915 /6 16786
4 I-5z90 14452 I 4075\\ I 3856
5 | 1-3043 12929 1:2439" 12164
6 | 1-3103 11955 ¢ Jdadger - r1-1o68
7 1 12520 11281 retyz | 10300
8 | 12106 10787 /NT0I35 | 9734
9 . 1.17860 I 0411\\ Y -g7z4 *92g9
e 11533 I-o& ) 0399 | -Boss
| origgy | 08 9136 8674
12 rI166 4 9677 8919 8443
13 I-mz';.’ o .gz11 8737 -824%
4 . %QN 0370 ‘8581 3082
5 15 9249 8448 +7939
= 16 ’1}719 gI44 8331 7814
2 17 \‘\I "ob4T *9O5T 8229 7703
3 RN 10572 8970 -8138 -76io%
= AN | T-051I 389y -8og7 7521
‘Eﬁ 1-0457 5831 7985 27443
:’\s.l
{"\.{' 2T 1-0408 .8772 ~7g920 NELE
'\\"' 22 1-0363 8719 -7860 1309
R\ 23 0322 8670 7806 7251
' 24 | ro28y 8626 | 7757 7197
25 10251 8585 12 '7148
26 1-0220 -83548 <7670 7103
27 I-0I19% 8513 7031 -70b2
z8 1-0164 8481 7898 -no23
29 1-0139 8g51 7562 6g87
30 1-0IT6 8423 7531 -6054
6o 9784 8oz 7086 6472
* $ 9462 7636 6651 5999




§ 42) INTRACLASS CORRELATIONS 245
VI.—Continued

THE DISTRIBUTION OF 5

of ;-

43297 43379 43482 - 43585 | 43689 | 437940

22991 . 2:2092 22904 2:2097 | 2:2999 3091\ ™
1-6503 1-6643 1-6569 1-648y | 1-6404 1-63 0y
13711 13600 | 13473 ; 13327 | 13170 | J'3860
1974 11838 ! 11656 - 11457 11239 ’::\{\09’97
170843 = 10680 .I 1-0460 1-0218 o8N Y 19643
roo48 | 9864 9614 - -9335 -goen,/| 8658
9459  -9259 | ~-BgB3 | -BOy3 8319 -7904
-good Br9r ¢+ 8494 8137 | 57769 7305
-8646 : 8419 : B1roa -77&“;\ Ying24 -6816
AV
8354 -8116 785 | gded | 6958 | 6408
8111 1864 1520 | JSpr2z 6649 | -6ob1
-7907 ~7632 7295 o 6882 | -6386 . 5701
7732 7471 qrog\[* 6675 | 6159 5500
758z 1 7314 6937 | 6496 1| 5961 5269
7450 . 7177 G791 ;6339 | 5786 -5064
7335 7057 |(\i6663 | 6199 | 5630 4879
-7232 69505, 6549 6075 5491 & 4712
1140 6854 0447 5064 5306 -4560
-7058 6768 6355 5864 | 5253 | 4421
N4 .
6984 o690 6272 | 5773 | 5750 4294
6916 Y 6620 6196 -56G1 5056 4176 |
-685,5\\"' 6555  -61z7 5613 490y -40068
4799 6496 : 6064 ; 5545 | 4890 3907
L by 6442 Hooh 3481 @ 4816 3872
P\\6699 -6392 "5952 3422 4748 | -3784
NS 6655 6336 | 5902 | 35367 | -a685 | -370r
6614 6303 | -5d36 5316 4626 ' -3624
6576 6263 ' 5813 5269 ¢ -4570 | 3559
6540 6226 -5773 -3224 | 4579 | | 3481
6028 5687 -5189 4574 +3746 2352

‘5522 5152 4604 3008 2913 | @
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TABLE

o't PER CENT, POINTS OF

Values
i | z 3. 4
_ 5

I 64574 G 5612 6 5066 66201\
2 3453% | 34534 | 34535 | 3455
3 25604 2'5003 24748 | 24003
4 21529 | 20574 | 20143 | \#oSyz
5 19255 1: 8002 753N 118y
6 17849 1-6479 5848, | 15433
¥ 16874 I5384 14667 1°4221
8 1-617% 14587 173809 1-3332
9 15646 1 3982 h, W 3100 172033

. X S \%
X0 I"5232 35097 /p" 12650 I'2116
: i1 I' 4900 173028 1-2238 1+1683
12 T4627 | ..1-}814 11500 1-1326
13 4400 (ST 2553 11616 111026
 CR 1°4208,’;;~ 172332 11376 10752
@ 15 I'4o§§« 1241 11169 10553
- 16 173900 11976 10989 1r0362
% 15 “\{\3775 1-1832 170832 1'0105
3 18 , /A J1- 3665 I 1704 170603 1-0047
= 19\ 13567 I 1591 10569 *9975
49 1- 3480 171489 10458 9708
¥/

A 2t I 3401 11398 1-0358 *9601
NS 22 13320 I'1315 F0268 9595
A\ 23 13264 I" 1240 10186 “g5o7
i '\\ 24 I-3205% I"IIYyY I"oIIl 19427
R Ny 25 I'3151 11108 1° 0041 'g354
~J 26 13101 rIose | r99%8 9280
N/ 27 | 13055 | 10997 "gg20 19223
28 I° 3013 10947 +p866 '9165
25 I"2973 10003 ‘o815 ‘gI12
30 12036 1'0859 9768 “gobI
6o I2413 10248 ‘9100 8345
e I'IgIO 9663 8453 1648

The author js indebted to Dr Deming
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V1.—Continued
THE DISTRIBUTION OF 7
Iof 7
5. 6. & 12, 24. o«.
6-6323 6-6405 66508 | 66611 | 66713 6681g
34535 34535 | 34536 | 34537 | 374536 | 34536
24511 2" 4446 2°4361 24292 24179 z- 4081
9728 1-g012 19459 1-G204 179118 1-892% "
16064 16808 16596 16370 | 16123 1; 5845
15177 14986 | 14730 | 1'4449 | 14134 |{Tg783
I-3927 1-3711 13417 1- 3000 1272 {1 2296
1° 3008 2770 12443 1" 2077 111662\ " 1'1169
12304 12047 11604 1-1293 , mMed3e | I027¢
11748 11475 11008 1- 0668 | \1-9165 *g557
‘x':\ 4
101297 rrorz | robrg | I'OIgA ¥ -gb1g 8957
10926 10628 1’0213 9938 | 9162 8450
1rabig 1-0300 ‘0875 | ¥ §374 8774 -8014
1 0348 103X 9586 |\ ¥90b6 8439 7635
I"OETQ *9795 93365 -88o0 8147 *7301
9920 9588 ‘9119 | 8567 7891 7005
9745 ‘9407 8927 -8361 - 7604 6740
"9590 ‘9246 | L 8757 -8178 | 7462 | 6502
19442 rg1o3z4|) 86os -Bo14 777 0283
"5329 ‘8973 "8469 *7867 IS 6086
9217 |+ (78858 +8346 *7735 +6964 *5904
.gr16 L »-8753 8234 7612 -6828 5738
-go23./ > 8657 8132 - 7501 - 6704 -5583
-8dg9.) | 8569 8038 | 7400 6389 | “5440
18862 *8489 " 7953 *7306 "6483 -5307
8701 '8415 7873 "7220 "6385 *5183
o) 8723 8346 w800 <7140 6204 - 066
) T -8664 -8282 7732 - 7066 -620g -4957
-8607 *8223 -7679 6997 *6120 ‘4853
8554 -B168 -7610 6932 - Hogh 4750
7798 7377 -6760 *5992 "4955 *3198
*7059 -6599 "5917 "5044 3786 | o

for this section of the Table of z.




VIII

FURTHER APPLICATIONS OF THE
ANALYSIS OF VARIANCE

€ W3

43.- We shall in this chapter give examplegg‘éf’} the
further applications of the method of the agdalysis of
variance developed in the last chapter jnxo\i‘:’onnexion
with the theory of intraclass corrélations. It is
impossible in a short space to giverexamples of all
the different applications which andy be made of this
method ; we shall therefore limit ourselves to those
of the most immediate pragtied] importance, paying
especial attention to thodg® cases where erroneous
methods have been largely used, or where no alterna-
tive method of attack'bas hitherto been put forward.

. &N/
44. _Ifit:iés of Regression Formule

There is, 10 more pressing need in connexion with
the examination of experimental results than to test
whethe\rta’ ‘given body of data is or is not in agree-
ment(With any suggested hypothesis. The previous
chapters have largely been concerned with such
<Eesf:s appropriate to hypotheses involving frequency
of occurrence, such as the Mendelian hypothesis of
segregating genes, or the hypothesis of linear arrange-
ment in linkage groups, or the more general hypotheses
of the independence or correlation of variates. More
frequently, however, it is desired to test hypotheses

involving, in statistical language, the form of regression
248

~
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lines. We may wish to test, for example, if the growth
of an animal, plant or population follows an assigned
law, if for example it increases with time in arithmetic
or geometric progression, or according to the so-called
“ autocatalytic,” or “‘ logistic,”’ law of increase ; we may
wish to test if with increasing applications of manure,

plant growth increases in accordance with the laws:
which have been put forward, or whether in fact the)

data in hand are inconsistent with such a supposition.
Such questions arise not only in crucial tests ofywidely
recognised laws, but in every case where a’Zelation,
however empirical, is believed to be desctiptive of the
‘data, and are of value not only in the\final stage of
establishing the laws of nature, but it the early stages
of testing the efficiency of a tecl@iq‘ua. The methods
we shall put forward for testing the Goodness of Fit
of regression lines are aimed both at simplifying the
calculations by reducing&ﬁiem to a standard form,
and so making accurate tests possible, and at so dis-
playing the whole ,p}c}cess that it may be apparent
exactly what quedtions can be answered by such a
statistical exanfiipation of the data.

If for each’of a number of selected values of the
independént” variate ¥ a number of observations of
the dépendent variate y is made, let the number of
valuia} of z available be 2; then ¢ is the number

ofarrays in our data. Designating any particular

2rray by means of the suffix p, the number of observa-
tions in any array will be denoted by #,, and the mean
of their values by #,; # being the general mean of
all the values of y. Then whatever be the nature of
the data, the purely algebraic identity

) S(y—)t = Sf{n,(F,— 7%+ Sy —7»)"
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expresses the fact that the sum of the squares of the
deviations of all the values of y from their general
mean may be broken up into two parts, one repre-
senting the sum of the squares of the deviations of the
means of the arrays from the general mean, each
multtphed by the number in the array, while the
second is the sum of the squares of the dewatlons\of
each observation from the mean of the array in¢which
it occurs. This resembles the analysis used, ﬁ:n- mtra-
class correlations, save that now the Qqumber of
observations may be different in cachi | array. The
deviations of the observations from~\thie means of the
arrays are due to causes of variatign; including errors
of grouping, errors of obseertLon and so on, which
are not dependent upon the valte of x ; the standard
deviation due to these causes’ thus prov1des a basis for
comparison by which weican test whether the devia-
tions of the means-8f the arrays from the values
expected by hypothésis are or are not significant.

Let Y, repfesent in any array the mean value
expected omghe hypothesis to be tested, then

"\." ) S{”w(J_’r'_Yw)z}

wﬂkmeasure the dlscrepancy between the data and the

hypothesis. In comparing this with the variation
_owithin the arrays, we must of course consider how
\“many degrees of freedom are available, in which the
observations may differ from the hypothesis. In some
cases, which are relatively rare, the hypothesis specifies
the actual mean value to be expected in each array;
in such cases 2 degrees of freedom are available,
¢ being the number of the arrays. More frequently, -
the hypothesis specifies only the form of the regression
line, having one or more parameters to be determined
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from the observations, as when we wish to test if the
regression can be represented by a straight line, so
that our hypothesis is justified if any straight line fits
the data. In such cases to find the number of degrees
of freedom we must deduct from ¢ the number of
parameters obtained from the data.

Ex. 42. Test of straightness of regression Zz'ne.-——'\i\
The following data are taken from a paper by A. Ky’
Hersh on the influence of temperature on the nuffiter
of eye facets in Drosophila melanogaster, in&*fgrious
homozygous and heterozygous phases of the ™ bar "’
factor. They represent females hete¥ozygous for
“full” and * double-bar,” the facet number being
measured in factorial units, effectiely a logarithmic
scale. Can the influence of Eiﬁ\perature on facet
number be represented by a Straight line, in these
units ? N

[TasLE
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TABLE 50
Temperature °C. 5% [ 27% j 1¢® [ ax% 23 | 2%, | 27”, 2% | 3r% | Toral, |
+ 807 3| 1 I 5 |
+ 707 Sy 2 5¢ bbbl 13
+ 6oy 30 7 3 oo | eee | e | o ] 23 A8
+ 507 250 g4 2| )L | 37 N
-+ 4407 224 10 16 ) ... 29 .. FON
+ 307 2101z 6| 1| 31 .. R
+ z-07 7| 5114|186 2| 2| .., o 4] Y46
-+ 107 30 411421} 83§ 9f.. A\ " 50
+ oy 3 7126 7|10 1 &‘.’.1 63
— 93 1 Tlrz|iz 28| 3| 1 o\ 50
- 193 b T 9 g2z 8 6 WL 60
— 203 2] 14 spaz}ig|sYa 54
- 393 - foz |19 18 | NG 1 94
— 493 Tl 4| 4 §5~ 6 & 47
~ 593 2] APy 13 | 5o
— 603 2 i &S Vi1 |28 9 50
— 793 N 8 8 8 28
- 893 a2 g 5 13
—~ 993 4 | 4 8
—10-03 IR 10 2 1z
—11'93 t I 2 4
—12'93 5| 1§ 2
—13-93 ‘5 5 I
—14-G3 SR T ARTOU R [V SV VP
15'93 ,,,x .X\ 1 b
Total \9@%4 83 |100) 86 {122 (13708 ls3 | B2y

There ,afjéf "9 arrays representing 9 different

tempera.;}gl;:’}és’. Taking a working mean at — 193
~we calelate the total and average excess over the
working mean from each array, and for the aggre-
'gatjgé‘bf all 9. Each average is found by dividing
Sthe total excess by the number in the array ; three
decimal places are sufficient save in the aggregate,
where four are needed. We have '

[TarLE
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excess |

TABLE 51
Array. 15. 17. G, 21, 3. 25. z71. 26, 31, ‘ Aggregate
Total
e,:fc;s} 583 | 204 | 367 | 225 | —43 | +37 | —369 | —463:5: 3065 +324 '
M
ean '} 6478 | 5444 ) 44221 2-250| — 506 | 303 | —=2-693 | —4°730 —5-783| +°3037

i

P YN
'\\

EN

The sum of the products of these nine pairs..\g')'f“;’
numbers, less the product of the final pair, gives “he
value of A\

S{”n(ﬁ»"‘f’)z} = 12,370, ' ’..j\:’

v

while from the distribution of the aggregdte of all the
values of ¥ we have \\’ 4

\“

N\
S(y“f)z = Iﬁ{&}:

whence is deduced the follgwiﬁg table :

a3
aX '

”Qi}.BLE 52

S

. \\ “Degrees of Sum of Mean
Varianco \ Freedom. Squares. Square.
N & - -

Betweemharrays - 3 12,370

S@h& arrays . 814 3,832 4708
AN
N Total . . 822 16,202
N 1
~\J

The variance within the arrays is thus only about
47 ; the variance between the arrays will be made up
of a part which can be represented by a linear regres-
sion, and of a part which represents the deviations of
the observed means of arrays from a straight line.
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To find the part represented by a linear regression,
calculate
S{x—%)* = 474221
and
S(x—%) (y—F) = — 753538,

: A

which latter can be obtained by multiplying the ab'mfg
total excess values by x— % ; then since Oy

N 3
N

N Sy

(7535738 _ | on RS
474221 A

- we may complete the analysis as follows) ~

TABLE 53 W/

< &

N
: Degrém‘cff Sum of Meaz
Variance between Arrays due to Frodden, Squares. Square.
Linear regression . o ,‘ Yo 11,074
Deviations from regr@%m 7 306 56:6
’l'otal\'\\"'. . 8 12,370

N

It is\:ﬁgéful to check the figure, 396, found by
differeiices, by calculating the actual value of Y for
the(tegression formula and evaluating
,..\; D S{ry(7o—Y )%

” such a check has the advantage that it shows to which
arrays in particular the bulk of the discrepancy is due,
in this case to the observations at 23 and 25° C.

The deviations from linear regression are evidently
larger than would be expected, if the regression were
really linear, from the variations within the arrays.
For the value of 2, we have



§ 451 THE ANALYSIS OF VARIANCE 255

TABLE 54
I%i%;ﬁii;:f Mean Square. Katural Log. + Log,,
7 566 4 0360 2-0180
814 4708 15493 7746 . &\
N
Difference (2) 1°2434 O

= |
while the 1 per cent. point is about +488. There can
therefore be no question of the statistical s ifstifcance
of the deviations from the straight line, although the
latter accounts for the greater part of thie variation.

Note that Sheppard’s adjusm\iéht is not to be
applied in making this test ; a cégsain proportion both
of the variation within array$ and of the deviations
from the regression line i8 ascribable to errors of
grouping, but to deduct}fr&im each the average error
due to this cause would be unduly to accentuate their
inequality, and's,o\';% render inaccurate the test of
significance. <

The example of regression worked out in
Section 2972 supplies a further iflustration, to which
the tesg»g’ﬁ%en in this section is equally applicable.

"{\ o
R\ 45. The ¢ Correlation Ratio g

N

QO . We have seen how, from the sum of the squares of
the deviations of all observations from the general
mean, a portion may be separated representing the
differences between different arrays. The ratio which
this bears to the whole is often denoted by the symbol
72, so that

' 7% = S{n(Fo— 1Sy 00
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and the square root of this ratio, 5, is called the corre-
lation ratio of y on x. Similarly, if Y is the hypothetical
regression function, we may define R, so that

R? = Sno(Y =)+ S(y—9)%,

then R will be the correlation coefficient between y and,.
Y, and if the regression is linear, R2? = #2, where PR
is the correlation coefficient between x and y. Erom
these relations it is obvicus that 4 exceeds R, andthus
that 5 provides an upper limit, such that no fégyession
function can be found, the correlation of'\iv}nich with
¥ is higher than 7, \%
As a descriptive statistic the utilisgrof the correla-
tion ratio is extréemely limited. It:\iﬂhl be noticed that
the number of degrees of freedqjx}"bin the numerator of
7% depends on the number of\the arrays, so that, for
instance in Example 42, the value of 5 obtained will
depend, not only on the ra:hé‘e of temperatures explored,
but on the number oftemperatures employed within a
givenrange. ()

To test if ‘a,h\observed value of the correlation
ratio is signifieant is to test if the variation between
arrays is significantly greater than is to be expected,
in the .a,@nce of differentiation, from the variation
withinNthe arrays; and this can be done from the
aua;’%is of variance (Table 52) by means of the Table

~dz.  Attempts have been made to test the significance
of the correlation ratio by calculating for it a standard
error, but such attempts overlook the fact that, even
with indefinitely large samples, the distribution of 7
for undifferentiated arrays does not tend to normality,
unless the number of arrays also is increased without
limit. On the contrary, with very large samples,
when N is the total number of observations, N7? tends
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to be distributed as is * when #, the number of degrees
of freedom, is equal to {(¢— 1), that is, to one less than
the number of arrays.

46. Blakeman’s Criterion

In the same sense that n? measures the difference *

between different arrays, so (32— R2)/(1— R?) measures®y,

the aggregate deviation of the means of the arrays

from the hypothetical regression line. The attempt to
obtain a criterion of linearity of regression by com-
paring this quantity to its standard errox vesults in
the test known as Blakeman’s criterig. In this
test, also, no account is taken of thé/ntiimber of the
arrays, and in consequence it dogg ytot provide even
a first approximation in estimating what values of
nt—#% are permissible. Sirpil’é"rl'y with #* with zero
regression, so with #*—#*, the regression being linear,
if the number of observitions is increased without
limit, the distributiqn\abes not tend to normality, but
that of N(n2—#2){1<+?) tends to be distributed as
is x* when # =—2. Its mean value is then (a—2),
and to ignotcdhe value of ¢ is to disregard the main
feature of dt§-sampling distribution.

Inﬁiﬁﬁ’mple 42 we have seen that with ¢ arrays
the .departure from linearity was very markedly
signifficant ; it is easy 1o see that had there been go

\a:ﬁr%iys, with the same values of 2 and ##, the departure
from linearity would have been even less than the
expectation based on the variation within each array,
Using Blakeman’s criterion, however, these two
opposite conditions are indistinguishable.

As in other cases of testing goodness of fit, so in

testing regression lines it is essential that if any
S
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parameters have to be fitted to the observations, this
process of fitting shall be efficiently carried out.

Some account of efficient methods has been given
in Chapter V. In general, save in the more compli-
cated cases, of which this book does not treat, the
necessary condition may be fulfilled by the proceduze
known as the Method of Least Squares, by Whi};h‘ﬁl&

measure of deviation RAY,
S{ﬂ’f(y F i Yﬂ)z}

is reduced to a minimum subject to tké%ypothetical
conditions which govern the form of X}

In the cases to which it is appropriate this method
is a special application of the Méthod of Maximum
Likelihood, from which it magbe derived, and which
will be more fully discussegl:iﬁ Chapter IX.

™

2 Y

4'7. Significance of 'the::'Multiple Correlation Coefficient

If, as in Sgc}l}m 29 (p. 156), the regression of
a dependentafiate ¥ on a number of independent
variates x;{ ¥, ;s is expressed in the form
\:\ ; Y = &1y Fbywp by,
ther#he correlation between y and Y is greater than
Qt;he\correlation of y with any other linear function of
N S the independent variates, and thus measures, in a sense,
) the extent to which the value of y depends upon, or is
related to, the combined variation of these variates.
The value of the correlation so obtained, denoted by R,
may be calculated from the formula

R = {8:5(x19) +835(x0 3)+ 8,5 (3 7} S (7).

The multiple correfation, R, differs from the correla-
tion obtained with a single independent variate in that
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it is always positive ; moreover, it has been recognised
in the case of the multiple correlation that its random
sampling distribution must depend on the number of
independent variates employed. The exact treatment
is in fact strictly paralle! to that developed above
(Section 45) for the correlation ratio, with a similar
analysis of variance.

that O
S(3%) = S(y —Y)2H{8:S(x19) +6:5(x2.) +83 S(xs&}

if #' is the number of observations of y,,a\pa 2 the
number of independent variates, these three terms will
represent respectively #' —1, # —p—,r\aﬁd P degrees
of freedom. Consequently the axa&lyms of variance

takes the form: O
TABLES5
Variance due to I\ | Degrees of Freedom.| Sum of Squares.
F. \\
&N/
Regression function %\ . ? 580+ . ..
Deviations from th&gegression
function . .;’,“ . . w—p—1 S(y—Y)t
R \Total . . 7 —I 5(»%)
§\ -
R\
ity bemg assumed that y is measured from its mean
\wﬂue

If in reality there is no connexion between the
mdependent variates and the dependent variate ¥, the
values in the column headed ““ sum of squares ™ will
be divided approximately in proportion to the number
of degrees of freedom; whereas if a 31gmﬁcant con-
nexion exists, then the p degrees of freedom in the

N
In the section referred to we made use of the fagt)

N\
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regression function will obtain distinctly more than
their share. The test, whether R is or is not significant,
is in fact exactly the test whether the mean square
ascribable to the regression function is or is not
significantly greater than the mean square of devia-
tions from the regression function, and may be carried
out, as in all such cases, by means of the Table of g:\\\

Ex. 43. Significance of a multiple correlationy-
To illustrate the process we may perform dig" test
whether the rainfall data of Example 24 was signifi-
cantly related to the longitude, latitude, &8d altitude
of the recording stations. From the 'Vé;mes found in
that example, the following table magybe immediately
constructed : €

TABLE 5}1‘3

. { ol ¢ |
. Degrees of ) (\bum of Mean
Variance due to Freedoms,, N ;«. Squares. Square. 1 Log,
Regression formula \\} 7917 2630 27878
. oE\J
“Deviations . %3 53 994°9 1897 1-4661
Tota\l' 7 56 1786-6

x‘\' p—

o, W/

te’value of z is thus 1-3217 while the 1 per cent.
- paint is about +714, showing that the multiple correlz-
. (ion is clearly significant. The actual value of the

\Jmultiple correlation may easily be calculated from the
above table, for

2= 791 7=1786-6="4431,
R—=-6657;

but this step is not necessary in testing the significance-
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48. Technique of Plot Experimentation

The statistical procedure of the analysis of variance

is essential to an understanding of the principles under-

lying modern methods of arranging field experiments.
This section and the two following illustrate its
application to these methods. Since they were

written the cognate subject of experimental desigf)
has developed rapidly, and a much fuller accountof -

the principles and logic of experimentation v\wll be
found in Zhe Design of Experiments. O
The first requirement which goveriis)all well-
planned experiments is that the expefiment should
yield not only a comparison of différent manures,
treatments, varieties, etc., but alsd @ means of testing
the significance of such diffex;gni,t:es as are observed.
Consequently all treatments must at least be
duplicated, and preferablyf{filrther replicated, in order
that a comparison ofsxeplicates may be used as a
standard with which\to compare the observed differ-
ences. This is a%fequirement common to most types
of experimentation; the peculiarity of agricultural
field experimngnts lies in the fact, verified in all careful
uniformit§ttials, that the area of ground chosen for
the exgeirihlentai plots may be assumed to be markedly
hetarogeneous, in that its fertility varies ina systematic,
,gn:ti’ often a complicated manner from point to point.
\For our test of significance to be valid the differences
in fertility between plots chosen as parallels must be
truly representative of the differences between plots
with different treatment ; and we cannot assume that
this is the case if our plots have been chosen in any
way according to a prearranged system; for the
systematic arrangement of our plots may have, and
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tests with the results of uniformity trials show that it
often does have, features in common with the systematic
variation of fertility, and thus the test of significance
15 whelly vitiated.

Ex. 44. Accuracy attained by random arvange-
ment—The direct way of overcoming this difficulty
is to arrange the plots wholly at random. For
example, if 20 strips of land were to be used £bJest
5 different treatments each in quadruplicate, we
might take such an arrangement as the fellowing,
found by shuffling 20 cards thoroughl{;}a,nd setting
them out in order : A

':\\J
TABLE 57.{“
\ }
B A ¢ B £z A bp A
3504 3430 3376 3334 32533374 3287 3361 3404 3366
B C B DXDP B A D C B
3416 3201 3244 3{@\ 3168 3195 3330 3118 3029 3085

$

& \J
The letters represent 5 different treatments ; beneath
each is shown'the weight of mangold roots obtained by
Mercer and’ Hall in a uniformity trial with 20 such

strips. (. y
~The deviations in the total yield of cach treatment
ate"
N
'"\\; . A. B C D E
A 290 +216 —59 —243 —204;

in the analysis of variance the sum of squares corre-
sponding to “ treatment *’ will be a quarter of the sum
of the squares of these deviations. Since the sum of
the squares of the 20 deviations from the general mean
15 289,766, we have the following analysis :
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TABLE 58
s | Bt Samt | Qe | St
| |
Treatment . . 4 58,726 | 14,681 | 1211
Experimental error . 15 231,040 | 15,403 : re4e1 \*
Total . ; . 19 289,766 | 15,251 }I 1235 ) x\
AN\

It will be seen that the standard error of a s{&fe plot
estimated from such an arrangement is 12’4&: “whereas,
in this case, we know its true value to\he*1235; this
is an exceedingly close agreement, and illustrates the
manner in which a purely randomatrangement of plots
ensures that the experimental etrsf calculated shall be
an unbiased estimate of the.&rrors actually present.
Ex. 45. Restrictions wpon random arrangement.—
While adhering to theSgssential condition that the
errors by which thg{)bserved values are affected shall
be a random sample of the errors which contribute to
our estimate df éxperimental error, it is still possible
to eliminategyiuich of the effect of soil heterogeneity,
and so inbrease the accuracy of our observations, by
laying(Festrictions on the order in which the strips are
arrafiged. As an illustration of a method which is
suidely applicable, we may divide the 20 strips into
<\;4 blocks, and impose the condition that each treatment
shall occur once in each block ; we shall then be able
to separate the variance into three parts representing
(i) local differences between blocks, (ii) differences due
to treatment, (iil) experimental errors; and if the 5
treatments are arranged at random within each block,
our estimate of experimental error will be an unbiased
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estimate of the actual errors in the differences due to
treatment. As an example of a random arrangement
subject to this restriction, the following was cbtained :

AECDB

CBEDA ’ ADEBC ‘ CEBAD,

Analysing out, with the same data as before, 'Q{e
contributions of local differences between blocksand

of treatment, we find O
TABLE N
~ 59 4 . \ 3
- Degrees of | Sum of l\)icaih Standard
Variance due to Freedom. | Squares. Bguare. | Deviation.
’\\4’
Local differences . 3 154483 | 51,404
Treal:n_nent . . 4 \40,859 | Io,215 e
Experimental error . I2 04,424 7,369 887
Treatment{-error . 16w} 135,283 8,455 gz o

EY

The local differfanéé’s between the blocks are very
significant, so that\the accuracy of our comparisons
1s much improyed, in fact the remaining variance is
reduced almost 1o 55 per cent. of its previous value.
The arrangement arrived at by chance has happened
to be alslightly unfavourable one, the errors in the
treatment values being a little more than usual, while
thé\estimate of the standard error is 88-7 against a

',\‘Ffue value 92'0. Such variation is to be expected, and
\\ ~indeed upon it is our calculation of significance based.
It might have been thought preferable to arrange

the experiment in a systematic order, such as

.ABCDE EDCBA l ABCDE EDCBA,

and, as a matter of fact, owing to the marked fertility
gradient exhibited by the yields in the present example,
such an arrangement would have produced smaller
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errors in the totals of the 5 treatments. With such
an arrangement, however, we have no guarantee that
an estimate of the standard error derived from the
discrepancies between parallel plots is really repre-
sentative of the differences produced between the
different treatments, consequently no such estimate of
the standard error can be trusted, and no valid test "\
of significance is possible. Q

23

included in the differences between blocks mayhow-
ever, be eliminated by regarding position within the
blocks, 7.e., the ordinal numbers, 1 2 {3y or more
H » ¥ ’ 3’ 4’ 3’
simply —2, —1, 0, I, 2, as an independént variate for
each plot, from which the yield as’d’eﬁe“ndent variate
may be predicted by the regressidn! An analysis of
covariance of the ordinal numbérs (x) and the yields
(9), as explained in Section 491, gives the following

results :—

QY

TABLE 591
ANALYSIS OF COYARIANCE OF YIELD (y), AND ORDER
. ¢ WITHIN BLOCK (x)

! - .
Degrees | M
766 | g : z ! . ean
Préedom.| * e Peo P | Square.
S |
BlocksX"'.: 3 i o o 154483
Treatments p 55| — 268-25] 40859 | 28678 | 7169°5
%{mr 12 | 345 | —1206:75 | 94424 | 52214 | 47457
“NEreatments ! : .
\{/ and Error 16 ‘|4o-o —1475 00| 135283 ‘ 8089z | 5302°8

It will be seen that the precision of the experiment

has been increased. The mean square for treatments

plus error is now 5393 ; in contrast, using blocks only,

it was 8455, while disregarding blocks it was 15251.
If we take as having unit value an experiment

N 3

That part of the fertility gradient which is iﬁ;)t“

~



R ’:, Units of Informaticn.
N Degrees
[ of Freedom for :
Error. Crude. | Adjusted. |
Randomisation of zo plots . 15 28-18 | 2503
Randomisation in 4 blocks . 12 sroy | 4420
Eliminating order in block . | I | 8007 | 6803
- | '
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giving comparable yields subject to a standard error
of 10 per cent., the value of such an experiment as this,
in quadruplicate, may be found by squaring one-tenth
of the mean yield, multiplying by four (giving 431816),
and dividing by the mean square obtained by each
method of procedure. For randomisation withoui

blocks we have then A\
431816 _ ,818 :m:"‘."x
I15250°8 9

units of information. Using randomisediblocks we
have 51'07, while adjustment for grdinal position
within the block raises the value to 8¢+67 units.

In this case, as in many othe;l%f the lower mean
square is obtained at the expense of some reduction

of the number of degrees of freedom on which the

estimate of error is basedl® This makes the tests of
significance somewhat{less stringent. If # is the
number of degrees of freedom for error, the loss
) ) N\ ) , X
of information ddesto this cause is found (Design
of Experiments, xi.) to be the fraction 2f{n+3), so
that, takingthis factor into consideration, we may

summarigéthe results as follows :—

:“\i{\ TABLE 592
AQ\DUNTS OF INFORMATION ELICITED BY DIFFEREXT METHODS
& . -




§ 49] THE ANALYSIS OF VARIANCE 267

Even when allowance is thus made for the degrees
of freedom absorbed, it is clear that in this case both
the use of blocks, and that of order within the block,
have been exceedingly profitable. The latter, of
course, is due to the exceptionally regular gradient of
fertility which these data exhibit.

49. The Latin Square O

The method of laying restrictions on the';&st’ribu-
tion of the plots and eliminating the ¢érresponding
degrees of freedom from the variancg'is, however,
capable of some extension in suita,bl’y.\planned experi-
ments. In a block of 25 plots a{ﬁ’aﬁged in § rows and
s coluruns, to be used for testing”s treatments, we can
arrange that each treatmgntlﬁccurs once in each row,
and also once in each..’qb’l‘umn, while allowing free
scope to chance in glie distribution subject to these
restrictions. Ther{ ot of the 24 degrees of freedom,
4 will represent tt€atment ; 8, representing soil differ-
ences betwe\ehfdifferem rows or columns, may be
e]iminatg{i' and 12 will remain for the estimation of
error\:f‘?‘hese 12 will provide an unbiased estimate of
the..e;}rdrs in the comparison of treatments, provided
that'every pair of plots, not in the same row or columa,

\'“{bélong equally frequently to the same treatment.

Ex. 46. Doubly restricted arrangemenis. — The
following root weights for mangolds were found by
Mercer and Hall in 25 plots; we have distributed
letters representing 5 different treatments at random
in such a way that each appears once in each row
and column.
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TABLE 6o
i Taotal of
; Fow,
D376 | Egrr | Cg3s5 4 B3sé | A33s | 1793
B 316 D 338 E 336 | A3s6 | C332 1678 |
C 326 A 326 B33s 1 D34z | E 330 | 1680\
Eg3ry | Bagz | Asgo | C327 | D336 | 103
A 321 Ci33z | D37 | Ezi8 | B 306 2398
‘{ "Q
Total 1656 1710 1673 15700 1639\ &378
RPN

777
W

Analysing out the contributions ef¥dws, columns,
and treatments we have

K7
O
TABLE g2/
. . Degrecs of(S8um of Mean :
Differences between Freedqm.j b3 quares. Square. S
Rows . .i\ 4’ 424024
Columns 2N\ 4 701-84
Treatments . ¢{M 4 330'243
Remainder \ 12 1754 32) 13073 T4t
Tota.].:\.i 24 702604 202-8 17 II
Vo \ud )

N W/
\

£ )

\ﬁy“ eliminating the soil differences between different
{Gws and columns the mean square has been reduced
~\\to less than half, and the value of the experiment as
NV a means of detecting differences due to treatment is
therefore more than doubled. This method of equal-
ising the rows and columns may with advantage be
combined with that of equalising the distribution over
different blocks of land, so that very accurate results
may be obtained by using a number of blocks each
arranged in, for example, 5 rows and columns. In
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this way the method may be applied even to cases.
with only 3 treatments to be compared. Further,
since the method is suitable whatever may be the
differences in actual fertility of the soil, the same
statistical method of reduction may be used when, for
instance, the plots are 25 strips lying side by side.
Treating each block of 3 strips in turn as though they \(
were successive columns in the former arrangement{’,
we may eliminate, not only the difference between the
blocks, but such differences as those due to a fertility
gradient, which affect the yield according to the order
of the strips in the block. When, therefore, the
number of strips employed is the squar ofthe number
of treatments, each treatment can be #igt only éalanced
but completely equalised in respect to order in the
block, and we may rely upon, thé (usually) reduced
value of the standard error ®obtained by eliminating
the corresponding degrees,8ffreedom. Such a double
elimination may be especially fruitful if the blocks of
strips coincide with{some physical feature of the
field such as theiplotghman’s “lands,” which often
produce a chagacteristic periodicity in fertility due
to variatiofsX i depth of soil, drainage, and such
factors. )

Todumm up: systematic arrangements of plots in
field trials should be avoided, since with these it is
_ugtally possible to estimate the experimental error in

several different ways, giving widely different results,
each way depending on some one set of assumptions
as to the distribution of natural fertility, which may
or may not be justified. With unrestricted random
arrangement of plots the experimental error, though
accurately estimated, will usually be unnecessarily
large. Inawell-planned experiment certain restrictions
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may be 1mposed upon the random arrangement of
the plots in such a way that the experimental error
may still be accurately estimated, while the greater
part of the influence of soil heterogeneity may be
eliminated.

It must be emphas1sed that when, by an 1mproved
method of arranging the plots, we can reduce. the
standard error to one-half, the value of the experlment
is increased at least fourfold; for only by repeating
the experiment four times in its original for(a ‘could the
same accuracy have been attained. T%Is argument
really under - estimates the prepondErance in the
scientific value of the more aceurate experiments,
for, in agricultural plot work,\the experiment cannot

in practice be repeated upofi) identical conditions of
soil and climate. A\

)
A 4

o,,.

49'1. T]:\ Analyms of Covariance

It has been\shown that the precision of an experi-
ment may be greatly increased by equalising, among
the dszegent treatments to be compared, certain
potential-Sources of error. Thus in dividing the area
availdble for an agricultural experiment into blocks,
m\éach of which all treatments are equally represented,

' '\t}ie differences of fertility between the different blocks
\\,. “of land, which without this precaution would be a
source of experimental error, have been eliminated from

the comparisons, and, by the analysis of variance, are
eliminated equally from our estimate of error. 1In the
Latin square any differences in fertility between entire
rows, or between entire columns, have been eliminated

from the comparisons, and from the estimates of
error, 50 that the real and apparent precision of the
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comparison is the same as if the experiment had been
performed on land in which the entire rows, and also
the entire columns, were of equal fertility.

A strictly analogous equalisation is widely applied
in all kinds of experimental work. Thus in nutritional
experiments the growth rates of males and females may
be distinctly different, while nevertheless both sexes‘\<
may be equally capable of showing the advantage, 6
one diet over another. The effect of sex, on("the”
growth rates compared, will, therefore, be eliminated
by assigning the same proportion of  fdles to
each experimental treatment, and, wHar is more
often neglected, eliminating the averdge difference
between the sexes from the estimate 6f€rror. Notably
different reactions are often fobmdl also in different
strains or breeds of animals,“and for this reason
each strain employed shouldibe used equally for all
treatments. The effect ofStrain will then be eliminated
from the comparisonsy anhd may be easily eliminated
by the analysis Qﬁx\§ariance from the estimate of
error. It is sométimes assumed that all the animals
in the same eXperiment must be of the same strain,
and adeqyape’ replication is in consequence believed
to be jgnjébssible for lack of a sufficient quantity
of hothdgeneous material. The examples already
discissed show that this requirement is superfluous,

_.&nd adds nothing to the precision of the comparisons
Chactually attained. Indeed, while adding nothing to
the precision, this course detracts definitely from the
applicability of the results; for results obtained from
a number of strains are evidently applicable to a
wider range of material than results only established
for a single strain ; and, working from highly homo-
geneous material, there is a real danger of drawing



272 STATISTICAL METHODS I§ 40°1

inferences, which, had we had a wider inductive basis,
would have heen seen to be insecure.

There are, however, many factors velevant to the
precision of our comparisons, which, while they cannot
be equalised, can be measured, and for which we may
reasonably attempt to make due allowance. Such age
the age and weight of experimental animals, the initial
weight being particularly relevant in experimegitsion
the growth rate. In field experiments with reots the
yield is often notably affected by the pzla@;".number,
and if we have reason to be willing . fo*¥ignore any
effect our treatments may have on’pxlant number,
it would be preferable to makeNbur comparisons
on plots with an equal nur’;ﬂge}"bf plants. Again,
although we cannot equalise” the fertility of the
plots used for different freatments, the same land
may be cropped in acfifevious year under uniform
treatment, and the yields of this uniformity trial will
clearly be relevént to the interpretation of our
experimental ¢yields. This principle is of particular
importance pwith perennial crops, for there is here
continuigy@ ot only of the soil, but of the individual
plants,grdwing upon it; and the much more limited
facilities for confirming results on a new, or unused,
plahtation make it especially important to increase

~the precision of such material as we have.

L
\¥
\:

Ex. 46-x. Covariance of tea yields in successive
periods.—T. Bden gives data for successive periods
each of fourteen pluckings from sixteen plots of tea
bushes intended for experimental use in Ceylon. The
yields are given in per cent. of the average for each
period, but the process to be exemplified would apply
equally to actual yields. We give below (Tables 61°1,
61-2) data for his second and third periods, which
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for our purpose may be regarded as preliminary and
experimental yields respectively. The sixteen plots
are arranged In a 4 X4 square.

TABLE 611
PRELIMINARY YIELDS OF TEA PLOTS

379 419 406 396 160N

s \/
£ \ T4
TABLE 61-2 4
. O
EXPERIMENTAL YIELDS OF TEANPLOTS
NN
90 93 85 gy &1 349
93 106 114, { 121 434
114 106 111e o3 424
92 107 .§\})2 102 393
389 41’2\\ " 402 397 1600
¥/

Let us sappose the area in the experimental period
had bee;(o‘ccupled by a Latin square in 4 treatments.
Of the&} degrees of freedom, 6 representing differences
between rows and columns would then be eliminated,
%Knﬂ ‘the remaining 9 would be made up of 3 for
differences between treatments, and 6 for the estima-
tion of error. Since no actual treatment differences
were applied, we shall use all 9 for the estimation of
error. The experimental yields then give

[TaBLE
T

88 102 9I 38 369 R
54 110 109 118 FEY: £\
109 10§ 115 94 423 Sl
88 102 g1 g6 117 {«
o PN
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—

Rows
Columns

Error

e

Total

X

TABLE 613
ANALYSIS OF EXPERIMENTAL YIELDS
Degrees of | Sum of | Mean
Freedom. | Squarcs. ‘ Square,
1095 ! o
3 955 | L
3 69'5 | .\
9 875'0 | \9i"22
15 2040-{;}k 13600

Even after eliminating the’@f’ge variance among’
rows, the residual varianceds)as high as 97-22; the
standard error of a sin,glé:‘"plot is, therefore, about
9-86 per cent., and ;h%g’.t"for the total of four plots
about 4+93 per centay

It is, howeveb, evident that a great part of this
variance of‘.ngi’& in the experimental period has been
foreshadowéa\i’n the yields of the preliminary period.
A glancefat the table will show that of the eight plots
whichWere above the average in the experimental

iniinary period.
3 Which in the first period yielded nearly the same total
for each set, and assigning these sets to treatments in
the experimental period, we might have very materially

N
a7

\‘:

%:i , seven were above the average in the pre-

In fact, by choosing sets of plots

reduced the experimental error of our treatment com-
parisons. The equalisation of the total preliminasy
yields has often been advocated, but seldom practised
for reasons which will become apparent. The common-
sense inference that sets of plots, giving equal total -
yields in the preliminary period, should under equal
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treatment give equal totals in the experimental period,
implies that the expectation of subsequent yield of any
plot is well represented in terms of the preliminary
yield by a linear regression function. The important
point is that the adjustments of the results of the
experiment appropriate to any regression formula (of
which the linedr form is obviously the most important) "\
may be made from the results of the experiment{
themselves without taking any notice, in the arrange- =
ment of the plots, of the previous yields. The method
of regression also avoids two difficulties \Kh:}:% are
encountered in the equalisation of previ€us yields,
namely, that the advantage of eliminating differences
between rows and columns (or blogkd) would often
have to be sacrificed to equalisation, and that such
equalisation as would be posg}b‘l’e would always be
inexact.
The adjustment to b@Iihzide in the difference in
yield between two plots, the previous yields of which
are known, 1s evident’b} the difference to be expected
in the subsequentyi€lds, judged from the difference
observed betweehyplots treated alike. The appropriate
coefficient ofiliniear regression is given by the ratio of
the covagi&i‘ce to the variance of the independent
va.riate\:v}}iich in this case is the variance in the
prelimtinary yields ascribable, in our experimental
’zlri‘ép,'ngement, to error. To find this variance of the
Cindependent variate the preliminary yieldsare analysed
in exactly the same way as the experimental yields.
A third table, this time an analysis of the covariance
of the preliminary and the experimental yields, is con-
structed by using at every stage, products of the yields
in these two periods in place of squares of yields at
either one period.



276 STATISTICAL METHODS [§ 49°1

TABLE 61+4

ANALYSIS OF PRELIMINARY YIELDS

| Degrees of | Sum of
Freedom. | Squares.

Rows . 3 5450 . &\

N
Columns 3 213'5 O\
"HError . 9 5675 | \V
Total 15 152‘6{5\ '

- g

w4

The exact similarity of the arq:%Qmetlc 11 construct-
mg these three tables may be Qlust?ated by taking out
in parallel the contributions ?)f “ columns ”’ to each
table. In Tables 61°1 and 61'2 the mean of the
column totals 1s 400, the. devxatlons in the first columns

are —21 and —1I1X;

~dénoting these by z and y, the

squares and prod @’s of these pairs of numbers are
written in pa.ra\iel below :—

TABLE 615
P <. - o
{\ A% xy »®
i"\} v
N
R\ Y 441 +-231 121
R 361 +228 144
a \Y/ 36 +12 4
\,‘ 16 412 [+
854 +483 278

Dividing these totals each by 4 (the number of
plots contributing to each), we have the corresponding
entries in the triple table :—
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TABLE &1-6
SUMS OF SQUARES AND PRODUCTS

X

in which the variances of the two variates, and their
covariance are analysed in parallel cdlumns.

Relationships expressed eltheP‘by regression or by
correlation, between the tWQ‘Va‘I‘la.tes, may now be
determined independently for" the different rows of the
table. In particular wes «heed the ratio 654-25/567°5
representing the regrgssion of ¥ on z, for plots treated
alike, after ehmma’cl}ig the differences between rows
and columns. _Thisis evidently the correct allowance
to be deducted from any experimental yield y, for each
unit by whick’the corresponding x is in excess of the
average,’ >

Thevcorrection, being linear, may be applied to
indiyidual plots, or to the composite totals represented
b? rows, columns or treatments. More compre-

\henswely, the result of applying the correction and

analysing the variance of the adjusted yields, may be
derived directly from the analysis of sums and products
already presented. For, if & stand for the regression
coefficient, comparisons of adjusted yields will be in
fact comparisons of quantities (y—éx). Now

(y—bx) = 622 —2bxy-+y*;

Degrees of | 2
‘ Fr%edom at = >
i Rows . . C 3 7450 837'0 10555
i Columns . . ! 3 2135 | 12075 ; 69- 5,4
Error . . . 0 5675 | 65425 875"
Total . . 15 1526-0 1612'0Q¢&340‘0
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so that, to obtain the sum of squares for the adjusted
yields in any line, we need only multiply the entries in
the table already constructed by 42, — 24 and unity, and
add the products.

In the present example 8 = 11529, 3% = 1-3291,
giving :—

"\
TABLE 61+7 A N
ANALYSIS OF ADJUSTED YIELDS i-; K4
1! Degrees of | Sum of P ealy
; Freedom. | Squares. ﬁuare
M\
Rows . ; . 3 155\-8 5193
D
Columns . . KR PAN £33 24703
NS

Error . . . 8¢ ";' 12007 1509
Total . . a,"ﬁ” 351°3 E 250G

It will be noticeﬂ that the total number of degrees
of freedom ha&'béen diminished from 1 5 to 14, to
allow for the ©ne adjustable constant in the regression
formula, and/that this 1 degree has been subtracted
from the\partlcular line from which the numerical
valué\of the regression has been estimated. In this

ling\in fact, 4 has been chosen so that
'n\: 3

QP BS(8) = S(x)
,and consequently, so that
S(y—6x)% = S(¥*N)—S%xy)/S(x?) ;

showing that the entry in this line is always diminished

- by the contribution of 1 degree of freedom. In the
other lines the entry may be either Increased or .
diminished by the adjustment.
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The value of 4 used in obtaining the adjusted
yields is a statistical estimate subject to errors of
random sampling. In consequence, although the
quantities y—éx are appropriate estimates of the
corrected yields, they are of varying precision, as shown
in Section 26; the sums of their squares in the lines .
of the table from which 4 has not been calculated do™\»
not therefore supply exact material for testing ghe)
homogeneity of deviations from the simple regréssion
formula. This test we should wish to make™¥f real
differences of treatment had been given t ‘or plots,
in which case for each wvariate we ghould have 3
degrees of freedom assigned to treatmphts, and only
6 left for error, from which 6 thé $alue of 4 would
be calculated. In our example{t\ﬁe\i‘e are no real treat-

. ments, and we shall illustratg, the test of significance
by applying it to the rows,the significance of which
is in reality of no consequence to the result of the
experiment. L )

Taking those,p’g\ts of Table 61+7 which refer to
rows and error” 5:1137, we obtain the reduced values
of the sum.6f>squares of the dependent variate y,
respectively.\ for the error and for the total, by
deductiqgfn each case from S(3?), the quantity

Q () S()

~Jderived from the same line. This gives for the
Jerror, the reduced value of the sum of squares of ¥,
120-7, as in Table 61-7; for the total we have
1970°5— 16943 = 276°2, corresponding to 11 degrees
of freedom. Subtracting the first from the second,
we find the reduced sum of squares ascribable to the
3 degrees of freedom for rows to be 155'5, which
is the value to be compared with the reduced sum of
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squares for error, in making an exact test. The whole
process is shown in Table 61-71. (See also Table 59+1.)
In this case it is obvious that the sum of squares
of (y—4x) would have provided an excellent approxi-
mation. As such, however, it is, always to some
extent, and sometimes greatly, inflated by the samplin

errors of 4; and there is no difficulty in applying the
exact test, whmch makes proper allowance forx ﬂlese

sampling errors. A\
TABLE 6171 ,,j\\

TEST OF SIGNIFICANCE WITH REDUCED YA}IKNCE

pend| e | e | e [mer| e | i
e\

Rows . . 3 745°0| 8370 | 10955 3 155°5 | 5183
Eror . .| 9 | s675| 6saash¥rsol 8 | 1oy | 1309

Total . 12 1312+ 149{{25 groes | Ir 2762

Comparing the. \&nalyms of the adjusted yields
with that obtafted” without using the preliminary
pluckings, the(most striking change is the reduction
of the mean square error per plot from g7-22 to 15-09,
in spite of\‘the reduction in the degrees of freedom,
showmgx that the premsmn of the comparison has
beep iricreased over six-fold. A second point should
_alsp'be noticed. The large difference in yield between
\dlﬂ'erent rows, which appears in the original analysis,
has fallen to about one-seventh of its original value.
It appears therefore that the greater part of this
element of heterogeneity may be eliminated in
favourable cases by the use of preliminary yields;
but this does not diminish the importance, when
such preliminary yields are available, of eliminating
from the comparisons differences between the larger
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areas of land, blocks, rows, columns, etc. In fact, the
elimination of rows and colurnns is more important in
the adjusted yields, where it reduces the mean square
from 24-08 to 15-09, than in the unadjusted yields,
where it reduced it from 136 to 97-2. If, for example,
we take an experiment with 10 per cent. error in the

means of treatments, to have unit value, the elimination .

of rows and columns in the unadjusted yields onlyt

increased the value from 2:g4 to 4-12, a net gain of
1-18 units ; while the same elimination in the aglg\l{éfed
yields increases the value from 1661 to 26;51,"a net
gain of 9-go units, or nearly nine times a§ wiach. In
practice, however, especially when thehAumbers of
degrees of freedom are small, it i‘s\dfes‘i’rable to base
such comparisons on the quantity” of information
realised, making due allowance\for the number of
degrees of freedom available inveach of the cases to be
compared as in Table 59-23°

An examination p{\the process exemplified in
the foregoing ex; ¢ shows that it combines the
advantages andsreconciles the requirements of the
WO Very widgl’y' applicable procedures known as
regression aridyanalysis of variance. Once the simple
procedu e"’i)l% building up the covariance tables is
recogniged, there will be found no difficulty in applying
the analysis to three or more variates and the complete
@t of their covariances, and so making allowance
sifnultaneously for two or more measurable but un-
controlled concomitants of our observations. These
observations are treated as the dependent variate, the
variability of which may be partially accounted for in
terms of concomitant observations, by the method of
multiple regression. Thus, if we were concerned to
study the effects of agricultural treatments upon the
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purity index of the sugar extracted from sugar-beet, a
variate which might be much affected by concomitant
variations in (@) sugar-percentage, and (8) root weight,
an analysis of covariance applied to the three variates,
purity, sugar percentage and root weight, for the
different plots of the experiment, would enable us ts{\‘
make a study of the effects of experimental treatmefiss
on purity alone ; Z.e., after allowance for any effectthey
may have on root Welght or concentration~yithout
our needing to have observed in fact ang( ‘t\ro plots
agreeing exactly in both root weight) yand sugar
percentage.

In such a research it would agag’h be open to the
investigator to eliminate not rﬁgrely the mean root
welght of the plots but, if he juc{ged it proﬁtab]e, also
its square, sO using a regtession non-linear in root
weight. Again, if he p@ssessed not merely the mean
root weight for the different plots, but the individual
values of which the\\mean is the average, he could
eliminate mmultaheOusly mean root weight and mean
square root weight, or, in other words, make his purity
comparisos With corrections apprdpriate to equalising
both the ‘feans and the variances of the roots from
the different plots.

Jin considering, in respect to any given body of data,
,\w"hat particular adjustments are worth making, it is
S sufficient for our immediate guIdance to note their

effect upon the residual error. If, in Example 46°1,
we compare Tables 6143 and 61-7, it is apparent that
we may divide the ¢ degrees of freedom for error
of unadjusted yields into two parts, one of which
comprises the 1 degree of freedom eliminated by the
regression equation, and the other the 8 degrees of
freedom remaining after this equation has been used
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for adjusting the yields. This anal
shown below in Table 61-8,

TABLE 618

IANCE 283

ysis of error is

ANALYSIS OF RESIDUAL ERROR

Degrees of | Sum of Mean s &N
Treedom. | Squares. | Square. | NN
Regression . ) ) . 1 7543 | 754 3\
Error of adjusted yields . . 8 1207 ,:i$§}°9
Error of unadjusted yields . 9 87576, N

The great advantage of making) due allowance for

the preliminary yields is evidengly.due

to the very large

share of the residual error_which is contained in the
1 degree of freedom specified by our regression formula,
We need not test the significance of a regression before
using it, but any adv?r\ltage it may confer will be slight

unless it is in faé¢'significant.

The chief advantage of the analysis of covariance
lies, howevety ‘not in its power of getting the most out
of an existifig body of data, but in the guidance it is
capal;&éwa giving in the design of an observational
progtamme, and in the choice of which of many

_ possible concomitant observations s
C_tecorded. The example of the tea 'y
in that case the value for experiment

hall in fact be
ields shows that
al purposes of a

lantation was increased six-fold by the comparatively
trifling additional labour of recording separately the
yields from different plots for a period prior to the
experiment, With annual agricultural crops, to crop
the experimental area in the previous year is nearly
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to double the labour of the experiment. What is
often more serious, a year’s delay is incurred before
the result is made available. Analysis of covariance
on successive yields on uniformly treated land shows
that the value of the experiment is usually increased,
but seldom by more than about 6o per cent., by an
knowledge of the yields of the previous year. It seefms
therefore to be always more profitable to lay dowh'an
adequately replicated experiment on untried ind than
to expend the time and labour available i.Q‘:EXploring
the irregularities of its fertility. O

In most kinds of experimentation) however, the
possibilities of obtaining greatly intteased precision
from comparatively simple suppl{gﬁx\éntary observations
are almost entirely unexplored, :and, indeed, in many
fields the possibility of makifig a critically valid use
of such observations ig\scarcely recognised. The
probability that met.h{)ds‘ of experimentation can be
greatly improved, .gi}her by a great increase of pre-
cision, or hy a preportionate decrease in the labour
required, is nafurally greatest in these fields.

An analysis of covariance always involves the
primary,.flassification of the analysis, in addition to
the relation between a dependent and an independent
varidte. Sometimes the classification may be complex,
.a\s"}i’s a hierarchical classification in three or more

\sfages ; also there may be more than one dependent
variate, and possibly a number of independent variates
may need to be eliminated. An example involving
these complications, and with the working procedure
exhibited in detail, is referred to in the bibliography
(with B. Day, 1937).
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ag-z. The Discrimination of Groups by Means of
Muliiple Measurements ; Appropriate Scores

A valuable application of the technique of calcula-
tion used in multiple regression consists in finding
which of all possible linear compounds of a set of

measurements will best discriminate between two

different groups. For example, a human mandible gty

jaw bone may be found in circumstances in which,

apart from the evidence provided by its form, ghe’sex
of its possessor is unknown. The anthrgpologist
desires, so far as is possible, to assign the right sex
to such finds. If he has a number '&fwmandibles of
known sex, measurements of these may provide a
clue. Some measurements, in if%‘el}, show significant
differences, but, as these arg.likely to be highly
correlated, the evidence they provide cannot be treated
as independent. For théisame reason other measure-
ments, which by theinselves provide no means of
discrimination, may) conjunction with the rest aid
considerably. ©Only when that particular linear
function is determined which, better than any other,
discriminates “mandibles of the two sexes, can we
. recognise(that some measurements are useless, while
othersiate of real evidential value.
20 illustrate the formal equivalence with multiple
"*f;a\gression let us suppose we have N, male and N,
female mandibles, on each of which measurements
%y, - . - %, can be made. The mean differences (male
— female) will be represented by di, . . - d; further,
we represent the sums of squares and products of the
measurements, ignoring sex, by

Sy=95 (x—%:) (x5—%5)
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Then it has been shown that the solutions 4, .
&, of the equations

Subi+Siebet - - - +Swby =4

LYY

512361_}-521352_.]_ . e “[—‘Sp_ﬁég:d:a
will be proportional to the coefficients of that line'alx\
function, - KoY
X =bmtboxat . . . Fbyxy, O

which, as judged from the data, will mostxsgiéessfully
discriminate mandibles of unknown sex, { ©

If we had introduced a formal vagiate y, equal to
N, /{N;+N,) for all males and to 2N, /(N,+N,) for
all females, the equations er.{ the coefficients of
multiple regression of ¥ on i’:};f,’ -y Zp would In
fact only differ from those waritten above by a factor
N;N,/(N;+N;) on the ,;'ig'li't. The value of the co-
efficient of multiple cefrelation of y with x, . . ., 4,
is therefore given by

NN
2 L e I .
R. ’—- hz (éldl PR -f éﬁdp).

Hotellig’ (1931) has shown that, if the variates x
are normally distributed within groups, the signifi-
cancelef the correlation can be tested, in an analysis of
variance test, with g, and #—p--1 degrees of freedom,

.. (where # is the number of degrees of freedom within
\J groups. So that
e _n—ptr Rz

. P I_R2'

This, of course, is the basic test as to whether any
significant discrimination has been achieved. We

may also wish to test whether any proposed dis-
criminant function,

X’ :_!lel‘*‘ - —]—Bpxﬁ,
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specifying the raties of the coefficients, but not their
absolute values, is compatible with the observational
facts. It has been shown that this can be easily done,
merely by finding the correlation coefficient, within
groups, between X and X'. If this is 7, the value of

R? in Hotelling’s test may be multiplied by (1—#2),
and used as before with 1 less degree of freedom \Q
to test the special form of discriminant proposed. Oy

The value of z may now be obtained from (3
6,2:: = n__———-—P+I . ———Rlz__ + ,xt\‘\ha
p__l I _.R b \ &

when R’2 = R¥(1—7%) and the degrees of freedom are
n, = p—1 and 7, = n—p+1. Thed st thus rejects
any proposed formula having 7 so.small that the value
of z given above is significanty .~
Instead of the differeness’ between the means of
the variates from two samples, the method may be
applied equally to thie regressions of the means of
several samples ’ou\’ghy variate characteristic of these
samples. Thus” “nard has used the regressions of
the means of ¢ertain measurements of Egyptian skulls
on the approximate date of burial, to ascertain what
linear furiction of the cranial measurements obtainable
shows\the most distinct change with time. An
ip\ip’(artant application to plant selection has been
~Jmhde by Fairfield Smith to determine how the different
observable characters of plant progenies should be
combined in selecting for any particular end.
If, in a replicated variety trial, observables x;,
. .. Xp are recorded from each plot, we may obtain
sums of squares and products, first, for varieties,
which we shall denote #; and next for errors ¢;
Subtracting the second from the first we obtain
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unbiased estimates of the varietal effects g, = 7, — ¢,
If, now, the value of a variety, for which 2, . . ., 2,
were exactly known, is judged to be correctly assessed
by the formula

alxl—}-azxz—f— C . QX \\*
where the coefficients ¢ may be positive or negau\re
we may at once calculate N

Ai=aygtaagaut - . . taugn \*
for each value of 7. The appropriate scor*Qs L« Oy
for rating the selective value of any vanety will then
be found from the simultaneous equations

byin+ . .. .‘f‘énzm’\:?AIs

: batia+ . .. +5ﬁ?2$5A2s
and so on, A

On solving these we c.ompare the values of the
compound score N\

= 5@-&—52%2—{- - +b,%,
for each vanety,\X being the function of the observ-
ables most hlghly correlated with the true value of the
- variety. £\ &

The/foregoing examples all illustrate the general
prm&LE)Ie that we may determine a set of adjustable
coeffitients in such a way as to maximise the ratio of
:the square of one chosen component to the sum of

\ )Squares of a set of other components in an analysis of
variance. The same principle may be applied to
maximise the ratio which the sum of squares for #,
degrees of freedom bears to that of a residue of #,
degrees of freedom. After making the adjustment to
obtain the maximal ratio, involving p adjustabi
constants, we shall, as the best available approxima-

tion, test the significance of 7, +p compared with
— # degrees of freedom.
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When only a single component is to be maximised
relative to the rest, the equations are linear, and the
procedure of multiple regression may be used. Other
cases may lead to equations of higher degree. Thus,
given a two-way table of non-numerical observations
we may ask what values, or scores, shall be assigned , o\
to them in order that the observations shall be as. N
additive as possible. 9

Ex. 46+2. The derivation of an additive .s:cgéjifzg
system from sevological readings—Twelve sa;.ni;;lés of
fhuman blood tested with twelve differensséra gave
reactions represented by the five symbols’ —, 7, w,
(+), and +, according to Table 619 6n next page
(G. L. Taylor, Galton Laboratos\();;\‘”

\J

™,

[TarLE
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If we arbitrarily assign the value o to the symbol
—, and the value 1 to the symbol -+, the values
corresponding to the symbols ?, w, and (+) may
be given the algebraic values x, y and 2. Then by
counting the numbers of the different kinds of symbol
in each row and column, we find the sum of squares

corresponding to rows and columns to be :—
TABLE 61-g01 24
MATRIX FOR Rows AND COLUMNS O
\. x ¥ F4 l 'xxt\‘\nz.
| <
I 718 2 —672 N\>106
¥ z 1630 —1416\ —z18
g —672 —1416 1 4} 216 \
! 1 —100 —218 NN216 118
| |

LY

where it is convenient to writet‘i:hé quadratic expression
as a symmetrical 4x 4 midtrix. Thus the coefficient
of 2% is 718, while thosé of zy and yx are both 2,
making together tbex\ﬁrm 4%zy. The whole has been
multiplied by 144\t6 avoid fractions. Similarly, the
total sum of Sguares for 143 degrees of freedom is
found to baus+

e \ud TABLE 61-goz
;':g{' MATRIX FOR TOTAL
ST : .
~O°

\/ x 17031 —1I57 —468 —6s
P —i157 4895 —3204 | —443
z —gb8 | —3204 3288 —i580
1 —65 —445 —180 695

To find the values of x, ¥ and # which will make
the ratio of the first of these expressions to the second
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as large as possible, it is necessary to solve an equation
of the 4th degree. If from each element of the first
matrix a multiple (§) of the corresponding element of
the second matrix is subtracted, the determinant of the
sixteen values so found when equated to zero g1ves ~
the equation. What is wanted is this equauon’\
largest solution. A\
It is' not necessary to calculate the coefﬁczents
of the equation. It is usually more com@ment to
evaluate the determinant exactly for chos‘eﬁ values of
8, and to apply the method of divided: hfferences to
calculate the required solution. Thé«followmg table
shows the values obtained at sug «chosen values of 4,
simplified by dividing by 3456

TABL’E 61 91

TRIAL VALUES OF A‘DETERMINANT, AND THEIR
Dlvi\DED DIFFERENCES
AN

Y ) .
l N, Third Fourth
) Determiinant. . 1 \;.Ix)s_t Divided | Second Divided [ %304 Do
P ifference. Difference. Difference. Difference, |

o 429100
o2 4398’2 376 |—1,805618 12
o4 | \£398370 560 | —3,241764°68 1—3,365366'4
o6 \1, 66680;2 —4,691487-56 |—13,624307-2°| -—431568
0'8'\ h1Z30a1° 552 | 28,30304812 | 82,480339-2 | 143,517744 | 179,936640
"rioy 30,181877 130,289677 24 [234,966572-8 | 287,467056 | 179936640
<
The second column is found by dividing the
successive differences of the first column by o-2, the
interval between successive values of 8; the third
column is likewise found from the second, the divisor
in this case being the difference between values of
9 separated by two steps, which in this table is
constantly 0:4. Since, for any expressmn of the 4th

degree, the fourth divided difference is constant, the
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exactitude of the values is checked in the last column,
if enough values of 8 are used.

It is apparent that the value required lies between
06 and 08. Since the fourth difference is constant
whether the intervals are equal or unequal, positive or
negative, the equation may be solved by choosing

successive values of @ to continue the table so as to,
make the determinant approximate to zero. Thus iiD

calculating the value for o7 a new line is addedun
which the third divided difference is increased{ﬁ’y*. the
fourth difference multiplied by o'3, the muitiplier being
simply the new value less the value in thevtable four
steps back. The new third difference is then
multiplied by o-1, the difference 1 8taken three steps
back, and added to the second difference. The factor
by which the new second différence is multiplied is
—o-1, since the new valugj;éf’ﬂ is +I less than that
used two steps back. Fisally, the new first difference
is multiplied by —or {and added to the value of the
determinant at 1ot find its value at 0'7. In the
table on p. 294 {I'2ble 61-92) this line has been filled in
with exact va{hle's. In the subsequent lines sufficient
figures ha{re ‘been retained for a very accurate
determimafion. Notice that the value chosen for the
thirddiste is w00 high by 3 units in the fifth place of
deelimals, but that this circumnstance does not interrupt
\'ﬂ;’le” straightforward course of the work., For lower
dccuracy fewer figures would be needed in each
column, and the process would be terminated in fewer
steps. For machine calculation, however, the work
shown is mot heavy, and completely avoids the
algebraic manipulation of the determinant.
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TARBLLE 63-92

STEPS IN THE SOLUTION OF AN ALGEBRAIC EQUATION By DIVIDED
DIFFERENCES ; FOURTH DIFFERENCE 179,936040 THROUGHOUT

[§ 492

I

1
# Determinant. 1st. =nl. ard. |

10 30,181877 130,289677-24 | 254,066572'8 | 287,467056
o7 —231684-844 | 101,378539°48 | 280,711377-6 | 341,443048
o708 — 184630046 | 26,652729'092 | 255,910306+7 | 360,581405)
0-70869 -F860-1817 | 28,004617-84 | 155,568230°5 | 344,45 904
o+7086593 —z-7600 | 28,108851-19 | 138,006001-4 | 2g2,828323 !
o-70B6503082 — 0002 28,T04007-21 | 158,200581-8 1.20%,586466
o 4 I}

The value of 6 so obtained is actually:}he fraction
of the total sum of squares a.scribahle to rows and
columns, when this fraction is maxitaised. To obtain
the corresponding score values,’ ;?,’,\j} and g, the matrix
for total sum of squares 1s mulmphed by this value of
8, and subtracted from tha.t for rows and columns,
to give the following eq,ugmons —
—488-8470x+ B21/G180y—340°3474¢ =  50°0371
821-0180x— 1858 8878y +854-54472 = —07°35334
—340°3474%5F 8845447y —B11-26772 = —343'5587,

of which the‘solution is
A

£ x = *192959,
§~~’ ¥ = 584453,
\ &= 9582637

'*l;he ‘values appropriate to the symbols ?, w, and (+)
if zero is assigned to —, and unity to +. It will be
observed that the numerical values, of which only the
first two figures need be used, lie between o and 1 1n
the proper order for increasing reaction. This is not
a consequence of the procedure by which they have
been obtained, but a property of the data examined.

Without evaluating the scores we may test the

significance of rows and columns directly from the
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value of 8, for only the ratio of the sums of squares
is needed. An approximate test is supplied by adding
3 degrees of freedom for the 3 unknown adjusted, to
the 22 for rows and columns, and subtracting 3
from the remainder. Thus we have i—
TABLE 6193
ANALYSIS OF VARIANCE OF A NON-NUMERICAL TABLE

~

Degrees | gums of Mean A )
Fre:gom. Square. | Square. t L?g:f} ’
ON )
Rows and columns . 25 70866 | 1028346 () 16723
o Y\

Remainder . .| 118 20134 | -oo2yby 4519
.\\“. ———

Total . .| 143 | 100000 ¥°( z == 1-2204

.‘\’ 3

The differences between differ’enf rows and columns
are thus very highly sign;ﬁééfni:. We may infer that
large differences exist inithe strengths of the sera, or
in the sensitivities of the'different cells used. This is
important, since 1t35\ only on this condition that the
scores are worthanything.

49:g<The Precision of Estimated Scores

The/Aimerical values obtained for the scores are,
of c@rs’e, subject to sampling errors. The notion of

asdtandard error is not, however, very simply applic-
.. (@ble to such scores, which cannot be used except in
\J conjunction with the other scores of the system,
including the two which have been assigned arbitrary
values. This difficulty may be overcome compre-
hensively by developing a test whether the data
differ significantly from expectation based on any
given system of scores. Thus, retaining the score zero

for a negative reading, we might have given to the
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readings ?, w, (+) and + the scores -25, -50, *75 and
100, or equally 1, 2, 3 and 4. Then a test of signifi-
cance exactly analogous to that made above will show
whether such a system is sufficient to explain the whole
of the apparent differentiation of rows and columns.
To perform the test, which is indeed of a kind fors

which extensive data, rather than a single ta,b]é,
should be used, we may denote the new variat%gjsr..f.
Then in Tables 61+go1 and 61-902 (p. 287) we' may
make a new column by multiplying the four columns
by 1, 2, 3 and 4 and adding; this gives ;l’ée"two sets of

values :(—
O
Rows and Coelumns, Totals. ‘
e —!
A
—1718 . \J—22795
—18z8 N —2759
3192w 4068
548 ‘v.:‘.;" 1285 |

If we multiply,,sb\e\ four rows by 1, 2, 3 and 4 and
add we shall eBtain an analysis of variance for £;
equally, if we, multiply by the system of scores we
have deriyédsfrom the data, we shall have an analysis
of covarignce for X and ¢, where X stands for the
syste@iﬁ'f scores previously derived. Similarly, we
mgy\'\ﬁnd the analysis of variance for X, giving :—
N\

2 \¥ TABLE 6104
\/‘ ANALYSIS OF COVARIANCE FOR ARBITRARY AND EMPIRICAL SCORES
5(¢% 8(¢x) S(X®)
Rows and columns 6454 22190390 770496
Remainder 3007 grzr280 | 3167762
Total 9551 313i*319 | 1087 258 |
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If now we eliminate ¢ according to the general
procedure, by deducting from S(X?) the square of
S(¢ X) divided by S(£2), using the lines for remainder
and total, and obtaining that for rows and columns
by subtraction, we find :—

TABLE 61-95

ANALYSIS OF VARIANCE OF EMPIRICAL SCORES, ELIMINATING AN
ARBITRARY SCORES D

Degrees of | Sum of Mean ;“7. N
Freedom. | Squares. | Square. } "Lags
e NI
Rows and columns . 24 12-615 | 5256, ‘8297
Remainder . . 118 48-033 et ~6982
Total . . 142 69-\(‘54\@ Yooz 1313

The degrees of freedomBave been reduced for
rows and columns, sincelafter eliminating ¢, there
are only two values adjustable ; the value of z exceeds
the 20 per cent. pojnt,but falls far short of the 5 per
cent. point. The table of data examined, with its
very few — ahd '+ entries, is thus not sufficient to
show that th&linear series of scores is inadequate.

In thisyas in Table 61-93, the # test is only approxi-
mate,‘\(ﬁbﬁgh in both cases it is sufficient to answer
the question at issue. In Table 6193 the distribution

) ofthe fraction of sums of squares 70866 depends
\\éﬁ’ the three parameters 22 and 121 for original
degrees of freedom, and 4, the degree of the equation
solved, which is one more than the number of adjust-
able scores. In Table 61°g5 the corresponding ratio,
-2080, likewise depends on the numbers 22, 120 and 3.
The general solution of this problem of distribution
has been found, but no exact tables are yet available.
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The comprehensive method outlined in this section
is applicable to a great variety of practical problems.
It often happens that the statistician is provided with
data on aggregates which it is required to allocate to
different items. Thus, we may have data on the total
consumption of different households, without knowing'\\
how this consumption is allocated between a man andy
his wife, or among children of different ages. I{the
composition of each household is known, the geldtive
importance of each class of consumer may e’;b\btaiined
by minimising the deviation between the¥onsumption
recorded, and that expected, on assigngd®scores, from
the composition of the family. Where continuous
variables, such as age, are invc{l}e\d, it is preferable
not to assign a separate unknewh score to each age
recorded, but to introducestMe age, its square and
possibly its cube, or higher powers, as independent
variates, as in fitting ,f:'\ur\;ed regressions. Thus Day
of the U.S5. Forest ,Si;}vice has succeeded in allocating
the cost of hauljﬂ@ logs of different diameters, from
data giving ehly the composition by diameter of
seventy different loads, each load invelving the same
haulage ic(ﬁ. An equation, quadratic in the diameter,
was feﬁnd sufficient to represent the curve of true
COSLRS

N
o

\Y
\
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IX

THE PRINCIPLES OF STATISTICAL
ESTIMATION

ne.

S

g0. The practical importance of using satisfactdry
methods of statistical estimation, and the widgs@‘fead
use in statistical literature of inefficient sta astics, in
the sense explained in Section 3, makes it aeegssary for
the research worker, in interpreting his pwn results,
or studying those reported by others, t6 discriminate
between those conclusions which ﬂ?)‘v\\r from the nature
of the observations themselve;s}’:;:a‘,’fid those which are
due solely to faulty methodsof estimation.

Ex. 47.—As an examiﬂé which brings out the
main principles of the(theory, and which does not
involve data so volufinous that we cannot easily try
out a variety of. p’l@thods, we shall choose the estima-
tion of linkagéfrom the progeny of self-fertilised
heterozygotésy~ Thus for two factors in maize,
Starchy (4 Sugary and Green . White base leaf
we may~have (W. A. Carver’s data) such observa-
tiQQSfaS the following seedling counts :—

O~ TABLE 62

T

Starchy. Supaty.

- | Total

Green. White. Green. White.

1997 | 996 | 904 o 3839
1 ]

249
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51. The Significance of Evidence for Linkage

It is a useful preliminary before making a
statistical estimate, such as one of the intensity of
linkage, to test if there is anything to justify estimation..
at all. We therefore test the possibility that the two)
factors are inherited independently. If such were ‘the
case the two factors, each segregating in a 3 : 1ltatio,
would give the four combinations in the ratio g% : 3: 1,
or with expectations, and corresponding ¢omtributions

to x2, shown in Table 63. v
~\/
TABLE 63 ‘O

SO

NS
Expectation (ms) . | 2159:4 719:8 I 719'8 2399
Difference () . | —162-4 —1—1’8&2 +184-2 | —207:9
d¥m . . i2:21 _‘3“48-17 4714 180-17 | 287-69

FaNM
e

& \J

Since for g “degrees of freedom the I per cent.
point is only,#4*34, the observed values are clearly in
contradictioh o the expectations. Such a result would,
howevexr{&)e produced either by linkage or by a
dep@rﬁ}i‘é from the 3 : 1 ratios ; the test may be made
speeific by analysing x? into its components as in
~Section 22.  For this purpose, designating the four
observed frequencies by «, 4, ¢, d, and their total by
7, the deviations from expectation in the ratio of

starchy and sugary will be measured by

x =(a+8—3(c+d) = +9s,
that of the other factor by

v =(ato)—30+4) = +387,
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while to complete the analysis we need
z=a—3b—3¢c+9d = —3145.
Then dividing the square of each discrepancy by

its sampling variance, namely 3z for x and ¥, and
gn for z, we have the components

x2zm . . . 784 y

yriam . . . 657 "

22gm . . . 286-273 Y g
Total . . 287714 \\\ ’

agreeing with the former total as nearly asits limited
accuracy will allow. The conclusionis’evident that
neither of the single factor ratios is abriormal, and that
all but an insignificant fraction ©f the discrepancy is
ascribable to linkage. The priticiples on which the
deviations #, 9, and z aregonstructed will be made
more clear in Section 55"

.

g2, The Spec;ﬁcﬁtn of the Progeny Population for
\ inked Factors

When, as{n the present case, the results are to be
interpretedyin terms of a definite theory, the specifica-
tion of\ﬁﬁé'population consists merely in following out
the,lgj@ical consequences of that theory. The theory
Nyve(jhé.ve to consider is that in both male and female
\g‘éﬁletogenesis, while each gamete has an equal chance
of bearing the starchy or the sugary gene, and again
of bearing the gene for green or white base leaf, yet
the parental combinations Starchy White and Sugary
Green are produced more frequently than the recom-
bination classes Starchy Green and Sugary White.
If the probability of the two latter classes is p in female
gametogenesis and p in male gametogenesis, the
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probability of the four types of ovules and of pollen
will be

" TABLE 64
Starchy. Sugary. ‘
i
Grecn, White. Green. White, :
Qvules . . 14 Hi—p) (1—2) ) %}5 o
Pollen . .| 3 | - | -y |[OWF |

5=
The theory further asserts that e%u‘:}] grain of
pollen will with equal probability fertilise each ovule,
and that the seeds and seedlingshproduced will be
-equally viable. Then the prgbablllty that a seedling
will be the double recessive Sugary White, which can
only happen if both pollen’ and ovule carry these
characters, will be 3pA8% VThe probability of each of
the other three classes of seedlings may be deduced
at once, for the t@sal probability of the two Sugary
classes is } drrespective of linkage, which leaves
L(1—pp") forthe Sugary Green class. Slrmla.rly, the
probabilityyof the Starchy White class is (1 —pz'),
leaving, (2 +pp") for Starchy Green.
Sinee these probabilities involve only the quantity
pp\;\l\t is only of this and not of the separate values of
? and ' that the data can provide an estimate. We

\" ywshall therefore illustrate the problem of estimating the

unknown quant;ty pp's which we may designate by 8.
If p and p" were equal, then /8 would give the recom-
bination fraction in both sexes, and if these are unequal
it will still give their geometric mean. The data
before us, however, throw direct light only on the
value of 8. It is to be observed that in the case of
coupling, when both dominant genes are received from
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the same grandparent, exactly the same specification
is used, only it is 1—+/0 instead of +/8 which is to be
interpreted as the recombination fraction.

The statistical problem now takes the definite form :
the probabilities of four events are

3(2+0), 3(1—6), 101—8), 19;

estimate the value of the parameter 8 from the observed,
frequencies @, 4, ¢, 4. ¢\D

~”‘
L 3

53, The Multiplicity of Consistent Statistic{*}:
O\ ¢

Nothing is easier than to invent methodsof-estima-

tion. It is the chief purpose of this chapterto explain
how satisfactory methods may be distinguished from
unsatisfactory ones. The late development of this
branch of the subject seems to {l}e* chiefly due to the
lack of recognition of the m.mi'béi' and variety of the
plausible statistics which:fpr}ésent themselves. We

shall ‘consider five of thesg!
In our example weay observe that the probability

of the first and f%;ﬁi;h class increases, and that of the
two other classes“diminishes as 8 is increased, The
expression ;" o b—ctd
will the;efb}e afford a convenient estimate of 8. To
makeéxc’bnsistent estimate on these lines, we substitute
thevexpected values
N
O~ 240, 1—8, 10, 6),

4 .
for a, 6, ¢, and &, and finding the result to be 78, we
define our first estimate, Ty, by the equation

#T, =a—b—c-+d.

Alternatively, we might take the expression for 2
in Section 51, which appears there as a measure of
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linkage for the purpose of testing its significance ; sub-
stituting the expected values, as before, we obtain
2{48 —1), and may define a new estimate, T,, by the

equation #(4Ty~1) = a—36—3c+9d,
or “4nTy = 2a—26—2c10d.

Obvicusly any number of similar estimates may h\e
formed by the same method. Oy
Instead of considering the sum of the &€X{treme
frequencies # and & we might have considetéd their
product. The ratio of the product ad to'ghe product
¢ clearly increases with 8 ; on substifition we have
an equation for a third estimate n, {1},6 form
B(z-0 \v
%; ~
a quadratic equation of whlch T, is taken to be the
positive solution. O
As a fourth statlstfo we shall choose that given by
the method of ma@;zmum likelihood. This method
consists 1n mu]{{plymg the logarithm of the number
expected in gach class by the number observed, sum-
ming for allelasses and finding the value of é for which
the sum{\is'a maximurm,.
xQW
> alog (2+8)1b log (1—8)-Lclog (1—8)1-dlog B

~ “may be seen, by differentiating with respect to 8, to be
/ a maximum if ,
AN s v
2480 187 1 —¢
leading to the quadratic equation
nbi—(a—26—20—d)0—2d = o,

of which the positive solution, T,, satisfies the condi-
tion of maximum likelihood.
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Finally, for any value adopted for 8, we shall be
able to make a comparison of observed with expected
frequencies, and to calculate the discrepancy, x?%
between them. In fact x* can be expressed in the form

52 £2

2
f?ﬁ:ﬁ?) 7

305

a_4f 2

2

~

and the value for which this is 2 minimum will be the AN

positive solution of the equation of the 4th degree)

{32 +fi2 _ 52_’__62 \ W
CHor T e (=¥ A\

2% ¢

a statistic which we shall designate by T N

54. The Comparison of Statistics by m}}ﬁis of the Test
of Goodness o?fi‘jt

All the statistics mentiongcf;”except the last, are
casily calculated. The redder should calculate the
first four, and verify thatithe value of the fifth given
below approximatel .{;atiéﬁes its equation. For each
statistic we may ,c\'agtulate the numbers expected in
the four classes 'of seedlings, and compare them with
those observed.> This is done in Table 65, where also
the values:’bf' x? derived from this comparison are

giverl. G TABLE 65

CQ'}PXRISON oF FIVE STATISTICAL ESTIMATES OF LINKAGE

. (Method. I. 2. 3 4. 5.
AV .
. . . | 087046 | 045194 | 035643 | "035712 035785
Recombination
per cent. 2388 | 2126 18880 | 18-858 18-917 | Observed
1974-25 |1962-875|1953 711 |1953°775 1953-845 1997
Nurbers go5-00 | 916:375| 9257539 | 9257475 925405 906
expected gos-00 | 916:375] 925°539 | 925475 | 925405 904
5475 | 43°375| 347211 | 34275 34345 32
¥ 9717 3-860 2-0158 2'0154 2-a153

X
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In the actual values of the estimates the first three
methods differ considerably, but the last three are
closely alike; so closely that the expectations of
methods (3) and (5) differ from those of (4) by only
about one-fifteenth of a seedling in each class. In the
comparisons between the numbers expected and those,
observed, the most important discrepancies are in the
fourth class, where method (2) gives a large{and
method (1) a very large discrepancy. The contrast
between the first three methods in the valpg’s‘*pf X is
very striking. For 2 degrees of fre@cﬁnmnot 3
because on fitting a linkage value gldegree should
be eliminated—a value above 9-21 _shéuld only occur
once in a hundred trials, The value given by method
(2) is not in itself signiﬁcantf‘bﬁt since its value is
nearly double that of methods {3), (4), and (5) we may
be sure that the test of ’géb'dness of fit, if correct for
the latter, must be highly erroneous for method (2),
as well as for method’\(l)’. The general theorem which
this tllustrates is ,tbg\.t the test of goodness of fit is only
valid when efficient statistics are used in fitting a
hypothesis to the data; in this case, as will be seen
in the next'section, methods (3), (4), and (5) are efficient,
while ;n@?ﬁods (1) and (2) are not.

OO

) “\ 55. The Sampling Variance of Statistics

h
N A more searching examination of the merits of

various statistics may be made by calculating the
sampling variance of each. Since the subject of
sampling - variance is usually treated by somewhat
elaborate mathematical methods, it will be as well to
give a number of simple formulz by which the majority
of ordinary cases may be treated,
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First, if » is a linear function of the observed
frequencies, such as

kla —I“ézé + é3£ +4é4d,

then, designating the theoretical probability of any
class by p, the mean value of x will be

nS(pk).

The random sampling variance of x is given Byy
the formula $)

1 \C
IVt =SB =SB, - o B)

and if the mean value of # is zero, theNariance of x
becomes simply 7 N4
nS(pEH. A"
WV
Further, if a second linpaﬁ}function of the fre-
quencies, ¥, 1$ specified byl eoefficients, £, then the
covariance of x and ¥ is 0%
CnS(pd).
In view of %@i%”}theorem the choice of the linear
" functions usedfor analysing ¥? in Section 51 will no

longer appear arbitrary, and the values taken for their
sampling’wariance will be apparent. For the values

f o/
o p \Q{

I
A &©® 330
~O
\Vand for x the values of £ are
I, I, —3 i
giving
S(?‘é) =0, S(Péa) =3

<o that the variance is 37, the value adopted. Fory
we evidently have the same values, with the additional
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fact that the mean value of zy is zero. For z again
S(pk) =0, S(p#%) =09,
while the mean values of xz and y# are each zero. In
analysing 2 into its components we always use linear
functions of the frequencies, the mean value of each,
being zero, and such that all the covariances shalls
vanish. &
It should be noted that the mean of xy is on]‘f}’zero
in the absence of linkage. When linkage is ]:&ésent the

values of p are 246, 1—8, 1—6, 8), .

giving for the covariance of x and y,\ )
#S(PRE) = ma0—1%)
and for the correlation betwet?n’;hem,
3403,
A statistic used for‘gzé‘t’irﬁation will not be a linear
function of the frequencies, for it must tend to a finite

value as the sample\1s increased indefinitely ; it will,
however, often b&of the form

< T = L (ra-thbt b,

as in cmi;ae;ample are T, and T,.
EQ “such cases a convenient formula is
RN nV(T) = S(pkt)—62 . G -))
\\,‘t}i.e statistic being suppoesed to be consistent. Now
for Ty, £ is always 41 or —1, and we have at once
—f2
vty ==,
#
while for T,, with £=4, —4§ —%, 2% and p =
1(2+9, 1—8, 1—06, 8) it is easy to find
_ 14-60—46%
V(Ty =2
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These two sampling variances are very different ;
if 8 is small (close linkage in repulsion), the variance
of Ty is only a quarter of that of Ty, and we may say
that T, utilises four times as much of the available
information as does T;. This advantage diminishes,

but persists over the whole range of repulsion linkages, -
for at 6 = } the ratio of the variances is as five to\

three. The variances become equal at # = ‘%u"‘ét

which value the coupling recombination, 1—/6;"1s
about -29, and for closer linkage than thispyn’ the
coupling phase, T} is the better statistic. .\ N\

The standard error to which either)estimate, T,
is subject is, of course, found by ta,l;{%(g the square
root of the variance; it will hecef more practical
interest to find the standard errofof the recombination
fraction, v/8. For this purpdse the above variances
are divided by 48, beforestaking the square root.
Putting # = 0357, in thévariances, we then have the
two estimates of the retombination percentage,

23-88&’-’%68 and 21-263-2-348,
from the ﬁrsp.@f’ which we might judge roughly that
the recombifiation per cent. lay between 153 and 324,
while th@is}Eond indicates the much closer limits 16+6
t0 26,00
For any function of the frequencies, whether the
~sample number # appears explicitly or not, we can
N\btain the approximation to the sampling variance
appropriate to the theory of large samples in the form

I aT\:  (8T\®
v = S{p(—a—a) J“(%) L ©
a formula which involves the differential coefficients of

the function in question with respect to each observed
frequency, and to the total, . After differentiation
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the expectation pz is substituted for each frequency a.
If we apply formula (C) to the function

F =log (ad)— log (6c) = log {13(2+ Ty} —2 log (1—T5),
the values of 2F[éz are

1 1 1 I \§\
ﬂ’ 6’ C’ d’ ""
:'» 30

"N

while, since # does not appear explicitly, eF /@)= o.
Hence, substituting p# for ¢, and the knowz{w?gllues of
. - x:\
p in terms of 8, we have _ K¢
1_ 2(p20)
07 g )
To obtain the variance of:\'ﬁ;\;}we must divide this
by the square of dF/dT,, pgﬁing T, equal to 8 after

#
2V = +

I 2
210 T 10

differentiation ; but K\
dF A N 2 1
e o - + =,
AT, g T, L 1—T, Ty
hence \\\
KN s 20(1—8)(2+4-6)
..::}\/U“) = e

For:r@é\\;ariance of the statistic which satisfies the
con%'rtgﬁs of maximum likelihood a very simple and
direte general method is available. The expression
_obtained by direct differentiation, and which, equated
"\t zero, gave the equation for T, in Section 53, was

™ bt d
24 &
246 10 B

If this is differentiated again with respect to 8, and
the expected values substituted for 4, 4, ¢, and &, we
obtain :

nf{ 1 2 I

et te)
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and this is simply equated to —1/V(T), giving

. _ 2801 —0) (2-+0)
the same expression as we have obtained for the
sampling variance of Ty. This expression is of great
importance for our problem, for it has been proved

that no statistic can have a smaller sampling variance,

in the theory of large samples, than has the solution
of the equation of maximum likelihood. This roup
of statistics (to which the minimum x? so! 1on also
always belongs), which agree in their sampling variance
with the maximum likelihood solution, are therefore of
particular value, and are designated ¢Rkient statistics,
on the ground that for large samples they may be
said to make use of the whole of therelevant information
available, whereas less efficient statistics such as T, and
T, utilise only a portion of\t.
The expression for, {he ‘minimum variance

, A—0) G40
; (1+2n

represents, this;;e“fore, an intrinsic property of the data,
irrespectiveyof the methods of estimation actually used.
For la{g'e?samples we may interpret its reciprocal

.‘.\

*: @ j (I +29)?3
,\:"“\,. ’ 2001 —0) (2+6)
2
%s a numerical measure of the total amount of informa-
tion, relevant to the value of 8, which the sample
contains ; and it is evident that each seedling observed
contributes a definite amount of information, measured
by
1428
2001 —6) (z-+8)
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relevant to the estimation of the value of 0. This
consideration affords a basis for the exact treatment .

of sampling problems even for small samples, for once
we know how to calculate the amount of information

in the data, the amount extracted by any proposed
method of analysis may be evaluated likewisc, though.
this may be difficult, and a comparison of the ,tWwd
quantities gives an objective measure of the effi¢ledcy
of the method proposed in conserving the, relevant
information available. \\

The actual fraction of the informatigri-utilised by
inefficient statistics in large samplesNs’ obtained by
expressing the random sampling m@elance of efficient
statistics as a fraction of that of thé.Statistic in question.
Thus for T, and Ty we have ¢he fractions, '

ey 28246)
E(Ty) = V(Ta)'f:}{(fﬂ = ) (L6
which rises to unitxat‘ﬂ = 1, but is less at all other
values ; and NS

¢ LN\
S , 80(1—8) (2-+6)
A\ S/

which rises to unity at § — }, falling to zero if 8 = o,

or 6 &)1,
\Fig. 11 shows the course of these fractions
~expressed as a percentage, for all values of the recom-
\'\, “bination percentage, V@ for repulsion, and 1—V?9
for coupling. Tt will be seen that for our actual value
of about 19 per cent. in repulsion, the efficiency of T is
about 13 per cent., while that of T, is about 44
per cent. The use of T, wastes about seven-eighths
of the information utilised by T,, T,, and Ty, while
the use of T; wastes more than half of it. In other
words, T, is only as good an estimate as should be
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obtained from a count of 503 seedlings, while T} is as
good as should be obtained from 1661 out of the 3839
actually counted.

The standard error of the efficient estimates of
recombination value is 1:545 per cent., giving probable
limits of 158 to 220 for the true value. The use of
inefficient statistics is therefore liable to give not

merely inferior estimates of the value sought, bug’.
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estimates” which are distinctly contradicted by the
datatfrom which they are derived. The value 23-88
'pé;'.\.’ cent. obtained for T, differs from the better
gtimates by more than three times the standard error
of the latter. It is highly misleading to derive such
an estimate from data which themselves prove it to
be erroneous.
The second respect in which the use of inefficient
statistics is liable to be misleading is in the use of the
x* test of goodness of ft. Using T, we should
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naturally be led to conclude that the simple hypo-
thesis of linked factors was in ill accord with the
observations and that the results must be complicated
by some such additional factor as differential viability.
Finding only 32 double recessives against an expecta-
tion of 55, it would be natural to draw the conclusiong
that this genotype suffered from a low viability ;
whereas the data rightly interpreted give no significant
indication of this sort. In the second place,"ys{fle{ther
the discrepancy were ascribed to differential miability or
not, its existence would provide a very, ~§60d reason
for distrusting the linkage value obtajied from such
data; if, on the contrary, satisfagtory methods of
estimation are used, the grounda‘fo? this distrust are
seen io fall away. O

%

7,

56. Comparison’g'f’.j-ifﬁcient Statistics
It has been seen that the three efficient statistics
tested give closely sitnitlar results. This is in accordance
with a general %hedrem that the correlation between
any two efficiént statistics tends to +1, as the sample
is indefinitelyincreased. The conclusions drawn from
their usé)will therefore ordinarily be equivalent. It
appedrs’from Fig. 11 that, for special values of &,
Ty and T, also rank as efficient.
()'T, is efficient when is 1, or in the absence of
Sinkage. This accords with the use of # in Section 51
for testing the significance of linkage, for we are then
testing the hypothesis that the factors are unlinked,
and the test may be applied simply by seeing whether
or not 2% exceeds (say) 367z, Any test based upon an
efficient estimate of linkage compared to its standard
error must agree with this. It is by no means
uncommon to find statistics such as T, which provide
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excellent tests of significance, yet which become
highly inefficient in estimating the magnitude of a
significant effect. An outstanding example of this 1s
the use of the third and fourth moments to measure
the departure from normality of a frequency curve.
The third and fourth moments provide excellent tests
of the significance of the departure from normality, AN\
but when the distribution is one of the Pearsoniafi )y
types differing considerably from the normal, the third
and fourth moments are very inefficient stati ties tu
use in estimating the form of the curve'(This is
the more noteworthy as the method of frioments is
ordinarily used for this purpose. The.fact is that the
efficiency of each of these statistics rigeéto 100 per cent.
only for the normal form, Just g’xs\fhat of T, reaches
100 per cent. only for zero Minkage; but that the
efficiency depends on the form of the curve, just as
that of T, depends on. the:value of 8, and falls rapidly
away as we leave the.sl:ecial region of high efficiency.
The statistic, '1:1,\ is fully efficient when & =1,
that is, for very high linkage in the coupling phase ;
and therefore, Gt the theory of large samples, should
give an estitiate equivalent to T, T, and Ty This
extreme-gase, § = 1, is interesting in bringing out a
limitation of the theory of large samples, which it is
somé}imes important to bear in mind ; for the theory
~i§¥alid only if none of the numbers counted, &, &, ¢,
N\and d, is very small. Now for high linkage in coup-
ling the recombination types, 4 and ¢, may be very
scarce. It is true that for any proportion of crossing-
over, however small, it is possible theoretically to take
a sample so big that & and ¢ will be large enough
numbers ; and in such cases the theory of large
samples is justified. But it is also true for a sample
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of any given size, that linkage may be so high that
seedlings of types 4 and ¢ will be few ; then, it is easy
to see that some of the efficient statistics will fail. If,
for example, either 4 or ¢ is zero, Ty will nccessarily
be unity, indicating complete linkage, whereas two or
three seedlings in the other recombination class will
show that crossing-over has really taken place. Twr
the same way Ty also fails, for it makes the recombisg-
tion fraction proportional to v/&* 1 ¢2, while T, @ad T,
make it proportional to --¢. In general, th{’équation
for minimising x? is never satisfactory v@:é] some of
the classes are thinly occupied, as on&might expect
from the nature of x?; the methed" therefore fails
whenever the number of classes pps'sh)le is infinite, as it
usually is when we are concerng&ﬁith the distributions
of continuous variates. Thg’ fwo remaining efficient
statistics Ty and T, give eqilivalent estimates
o n

for the recombinAtion fraction, when the linkage is
very high. Q,f:course, as shown by Fig. 11, for any
incomplete‘ .\Ilthk-age the efficiency of T, is slightly
below IQQ\per cent., so that the exact value of T, is
slightlyypreferable. Ty, however, does provide a
distifie Iy better estimate than T, or Ty if é and ¢ are
small.

N

)  57. The Interpretation of the Discrepancy X2

The statistic obtained by the method of maximum
likelihood stands in a peculiar relation to the measure
of discrepancy, x?, and an examination of this relation
will serve to illuminate the method, using degrees of
freedom, which we have adopted in Chapter 1V, and
throughout the book. It has been stated that although
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in the distribution of a given number of individuals
among four classes there are 3 degrees of freedom,
yet if, as in the present problem, the expected numbers
have been calculated from those observed by means of
an adjustable parameter (9), then only 2 degrees of
freedom remain in which observation can differ from .
hypothesis. Consequently the value of x* caleulated, N
in such a case is to be compared with the valugs.)y
characteristic of its distribution for 2 degrees_of
freedom. This principle has been disputed,‘k{ﬂ‘t, the
common-sense considerations upon which it.{i@s based
have since received complete theoretical\vérification.
In the present instance we can in fap\gjdentify the 2
degrees of freedom concerned. Eor the observed
numbers in each class will be eg’ﬁ‘irély specified if we
know : N

(i) The number in ]:hé:'sample ;

(if) The ratio of starchy to sugary plants ;

(iii) The ratio ‘ofgé'reen to white base leaf ;

(iv) The infefsity of linkage.

Now if thieexpected series agrees in items (i) and

(iv), it ca,g(on]y differ in items (ii} and (ii‘i). and these
will .b%gfgmpletely given by the two quantities ¥ and ¥

defined’b
\m:‘ 7 x = a-+b—3¢—34,
\'\; " y = a-—36—|—6——3d,
specifying the ratios by linear functions of the
frequencies.

The mean values of x and y are zero, and the
random sampling variance of each is 3z. In the
absence of linkage their deviations will be independent,
but if linkage is present the mean value of xy has
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been found to be ,
1—48
3 H
and the correlation between x and ¥ to be

__3?3

1—48
3 \\
The simultaneous deviation of x and Y from ero
will therefore be measured (compare Scction 36}‘1) y

Q2 — I [a*—2pxy+y? '\\ R
- 1—p? 3n \‘

8%(1—9)(1-4—29){ 4,;;;—}— (1—45).1:}'J

This expression, which of @Qurse Clet,l’ldS upon 8,
is a quadratlc function of the frequencies ; in this it
resembles ¥?, and on comparing term by term the two
exXpressions it appears that

a bte  d|2
Qﬁf‘l{z-{_a ¥T9+§}'
where [ is the quanuty of information contained in the
data as deﬁﬁed in Section §5.

Th131 tity has two important consequences : first,
that %= Q* for the particular value of 8 given by the
eqya‘tlon of maximum likelihood, and for no other
value. At this point, then, even for finite samples,

\\’the deviations between observation and expectation
represent precisely the deviations in the two single
factor ratios.

The second point is, that for any value of 8, x?
is the sum of two positive parts of which one is QF,
while the other measures the deviation of the value of
# considered from the maximum likelihood solution ;
this latter part is the contribution to x2 of errors of
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estimation, while the discrepancy of observation from
hypothesis, allowing any value of 8, is measured by
Q2 only.

Fig. 12 shows the values of x* and Q? over the
region covering the three efficient solutions.

The contact of the graphs at the maximum likeli-
hood solution makes it evident why the solution based’\\\
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on}.}u}inimum x? should be of no special interest,

. :é‘ifth'ough x* is a valid measure of discrepancy between

observation and hypothesis. As the hypothetical

value, 8, is changed the value of Q2 changes, and,

although this change is very minute, it gives the line

a sufficient slope to make an appreciable shift in the
point of contact. .

If we set aside the portion ascribable to errors of

estimation, which satisfactory methods of estimation
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will always reduce to a trifling amount, it is apparent

that the measure of discrepancy, x2, in our chosen

problem, merely measures the deviation from expecta-

tion of the two single factor ratios, and its significance

must therefore be judged by comparison with expecta-

tion for 2 degrees of freedom. Such a comparisor’
will give an objective test dependent only on the d;-kta\,
and independent of our methods of treating it, if\and

only if the error of estimation measured from the

maximum likelihood solution is sufﬁci{;rgt‘lyh’ small.

This, of course, where the theory of lapse samples is

applicable, will be true if any efficient Statistic is used ;

it will always be true for the methdd of maximum -
likelihood. O

57I. Fragmgpt‘ax:j; Data

It very frequently happ)éfls, in a statistical enumera-
tion, that only a portion of the whole sample is
completely classified; the remaining members showing
various degrees of fncompleteness in their classification.
Since the treatment of such data appears extremely
troublesomefZat is proper to lay great stress upon
completeness of classification, whenever this is possible.
In marycases, however, some degree of incompleteness
is utfavoidable, and the problem of framing an adequate
statistical treatment, which shall utilise the whole of

_ the information actually available, should be fairly
faced. It will be shown that if approached in the
right manner, and on the basis of a comprehensive
theory of estimation, such problems offer no insuper-
‘able difficulties. We may again find a good example
in the estimation of linkage, remembering that the
type of difficulty to be discussed occurs in statistical
work of all kinds.
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Ex. 48. Tedin, working with two linked factors in
Pisum, Ar and Oh, obtained, by selfing the double
heterozygote, a progeny of 216 plants which could be
classified as gg OhAr 71 ohAr and 46 ar. The
factor Oh could not be discriminated in the last group
of plants, and, as is inevitable with moderate numbers .
and high linkage in repulsion, the proportions of thisgs

From 63 of the OhAr group progenies were raised by
self-fertilisation, which enabled their parents\to be
classified ; 3 were homozygous for Ar but‘n\:&i”for Oh,
8 for Oh and not for Ar, while 52 werelieterozygous
for both factors. Further, all of theése 52 showed
repulsion, Finally, of 47 plantscef ‘the ohAr group
the progenies raised showed only¥3 fo be heterozygous
for Ar, the remaining 44 beingrhomozygous.

We may now set out th&'distribution of those 110
plants which in the endiwere completely classified
alongside a table shqx'g'ng the relative frequencies with
which plants completely classified should fall into the
several classesy the recombination proportion being

represented, By, 2.
7. TABLE 66
\f ol Ar At ar
. '.Q\ Ar ar ar
\ y OhOh o 8 —_
Ohoh 3 o 52 -
choh 44 3 -

[TaBLE 67

~N

N

progeny give little information as to linkage valfe.”
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TABLE 67

Ar Ar ar

Ar ar ar |
OhOh 2° z25(1—2) (1—2)*
Ohoh | 2pG—p) | 2#* 2G—p | 2a—p) | O
ohoh | (i—p | 2p(1—p) 2 A9

S
Next we have 60 plants, from whighDprogenies

h
were not grown, but which could be C@é&ed by their
appearance as follows :(— \

O

TABLE 6 \"5\ v

Ar ,,\}\} ar
Ar ’{n‘{ar ar
OhOh N
| ...~;\\ 36 o
OhohJ,\g )
&\ N—
ohoh 24 G
&
x>
N\ TABLE 69
Ar Ar ar
Ar ar ar
OhOh]
1 2+2° i—2*
Ohoh | |
ohoh 1—ph 22

and finally 46 plants, of which the classification is still

less complete :—
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TABLE 7o
Ar Ar ar
Ar ar ar

OhOh?

Ohoh o 46 “\\

ohoh J x"‘f'“ x
TABLE 71 S }\ '
Ar Ar .\XAf
Ar ar { Var

SOW

OhOh ) ;ﬁ"

Ohch v':fjél'“ x

choh ' Q\\

—~ -
L\

If now it nidy be assumed that those plants, which,
within anywelass, are incompletely specified, are a
random.§dmple of the members of that class, we may
apply{{hé method of maximum likelihood, as in Section
53;}'5}7 multiplying the logarithm of the expectation
~Jn any class by the number recorded in that class,

irvespective of the
completeness of classification. When the expectations
of any two classes are the same, the numbers in such
classes may therefore be pooled, and we obtain

(8-+343) log {2p(1—p)t+52 log {2(1—p)5+44 log (1—p)°
136 log (2-+#%)+24 log (1—p%
+46 log (1)
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as the logarithm of the likelihood, which 1s to be
maximised. Any constant factor, such as 2, in the
expectations makes a constant contribution to this
quantity, independent of p, and may therefore be
ignored. In particular the expectation in the arar
class being entirely independent of p, the number in{\
that class makes no contribution whatever to 6Ut
knowledge of the linkage, and the whole class mQst be
ionored. With these simplifications, and usig the
fact that the logarithm of a product is ¢ sum of
the logarithms of its factors, the expfession to be

maximised is reduced to )

14 log #4206 log (1—$)+36 log (ahp®+24 log (1—59.

By differentiating this gxﬁréﬁsion with respect to
p, we obtain the equatigh’ of maximum likelihood
in the form \\

ﬁ;ﬁi 720 _ 4% .
R 2R A

the first tweterms are due to plants completely
classified, and may be expected to contain the bulk
of the desired information, the latter pair including
the .iﬁp"ﬁlememary information due to the 60 Ar
planis less completely classified. From the former

"*év—nﬁy we should judge that p was nearly 14220,
or between 6 and 7 per cent. The exact estimate
of the method of maximum likelihood may be most
rapidly approached by substituting likely values for
p and interpolating. Thus putting p equal to 00
and -07 we obtain :—
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TABLE 72
' P =r0b b= o7 b= 0638
14fp . . . 23333 200700 219436
—z206f(1—p) .| —219°13 —221°51 —zz20°038
w2 pf{z %) . 216 2°5I 2292
—48 pf(1—2% . —289 —338 —3075
Total % | F3es —22:38 —1385

The result of substituting 06 being I 3-45<\‘v}hile
with 07 we obtain —22-38, the true valug/which
gives zero must be near to 06+ -0l (1445~ 3583),
or -0638. The effect of substituting\\ghis value 15
shown in the final column, which &rves both as a
check to the previous work, and\as a basis, if such
were needed, for a more aglurate solution. The
improved value 1s -06345, from which as an exercise
in the method the studedtimay rapidly obtain a still
more accurate value. (A
O
g2, The Amoqzj.t' o\f Information : Design and Precision

The stan@ard error to be attached to such an
estimate dsederived directly from the amount of
inform fipn in the data. In cases in which the data
are ftagmentary, we proceed as usual in differentiating
théfeft-hand side of the equation of maximum likeli-
hood, and in changing the sign of the terms, but
{1 substituting the expected for the observed frequencies
note should be taken of the basis on which these are
expected, as well as of the expectation in the classes
which do not appear in our sample. Thus in the
classification of the first year the expectations from

216 plants are 54(2 +*) onAr and 54(1— p*) ohAr;

"N,
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these will make contributions to the information
available of

saets) (;25) +sa—-p (Z24)

24-p
* eprl 1T
ot 216p [z+3>2+ ey '\\’\
216
“Cemar 0 W

O
and this, a very trifling amount numericagy";{ is the
amount of information available from theéfirst year’s
classification. ' }\

If we now consider the 47 obAr plants from
which progenies were grown, we Bave expectations
47(1—p = {(1—p*)ArAr and )@;}xzp(l-—p)+(1——p3)

Arar, The additional inforrgﬁtion which these will
contribute will be R\

12 ;I)*f’f‘“ o (i ()
471—{—;&([“ - +94I+? P 4717

the expected fréq‘ﬁ\é'r}my in each portion being multiplied
by the squarg of its logarithmic differential, and a like
term dedueted for the total ; this gives

27

O 477 o |
& S CE = R CEL|

oy
N\
w4

- 2
=47 50—y (Y

The additional information per plant of this group
1s therefore

4

2(1—2)
w—pp 0

Finally, the observed distribution of the 63 ArOh
plants into 52 ohAr/Ohar, 11 OhOhfArar or Ohoh/
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ArAr, and o OhOh/ArAr or OhArfohar must be
replaced by the expectations

6
(z+?}z){2(l—zﬁ)“, 4p(1—=2): 32%)-

The additional information per plant in this group
is therefore \\\

2—;—?{2(1 — (1__23,)2+4p(:~p> (5- I—i—}f

IRGAL

or ! (8-{-4(1_2}:’)2—1-12} RN

AP AN
22 Hi—p) (2 +P,’\k2:~
which may be reduced to '\.;’*
set2p—p0" . (©

p1—p) )(??};?2)2

At 6-345 per cent.. récombination the numerical
contribution per plaft under (A}, (B) and (C) are
006051, 29°76 z{n}i 35-58. The second year’s
classifications ]:Eh}s give nearly 5000 and 6000 times
as much infprmation per plant as the first year's
classificatidn On the actual numbers available the
total _inf6 mation is 3642. The reciprocal of this,
*00 &746 is the variance of the recombination fraction ;
wherice 2746 13 the variance of the recombination per-

~Jeéntage, and 1°657 per cent. is the standard error.
. The advantage of examining the amount of
information gained at each stage of the experiment
lies in the fact that the precision attainable in the
majority of experiments is limited by the amount of
land, labour and supervision available, and much
guidance may be gained as to how these resources

should best be allocated, by considering the quantity
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of information to be anticipated. In the experiment
in question, for example, it appears that progenies
from OhAr plants are somewhat more profitable than
those from ohAr plants.

If, on the contrary, our object is merely to assign
a standard error to a particular result, we may estimate(’
the amount of information available directly by diffey-\
entiating the expression for 2L/ép in the equatjdn of
maximum lLkelihood, using the actual puibers
recorded in the classes observed. We should then'obtain

)

. 206 7t 4G,
AU G P

this gives 3725 as the total am;cxuﬁt of information
upon which our estimate has béen based, and 1-638
as the standard error of the@stimate of the recombina-
tion percentage. [t should be noted that an estimate
obtained thus is in no Way inferior to one obtained
from the theoretiq&lz\}expectations; only that it gives
no guidance as {0 the improvement of the conduct
of the experifient. It might be said that owing 1o
chance thé\gxperiment has given a somewhat higher
amount 0f information than should be expected from
the phimbers classified.
R The difference between the amount of information
.. &ctually supplied by the data and the average value
SJto be expected from an assigned set of observations
is of theoretical interest, and being often small requires
the rather exact calculations illustrated above. For
the purpose of merely estimating the precision of the
result attained a much briefer method may be indicated.
The values obtained in Table 72 show that for a
change of -o1 in p, the value of 9L/&p falls by 35-83;
from this the amount of information may be estimated
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at once to be 3583 units, and the standard error to
be 167 per cent., a sufficiently good estimate for
MOSt PuUrposes.

In some cases this very crude approximation will
not be good enough. It really estimates the amount
of information appropriate to a value about 65 per

cent., half-way between the two trial values. We *
want its value at 6-345 per cent. the actual value®

obtained from our estimate. An improved vahie

may easily be obtained where three trial values.have
heen used. From p = -0b and p = 0638, \{gfhax're

13:45+1-385

Con® | 3%

at p = 0619.
From p = ‘0638 and p = -0;:,\‘:
#1-385—#22.%3:;?;386
0:0062, 4%

at p = 0669,

Whence for p = 3@345 we should take

1001855 X 3386100345 X 3904 __ .,
*003

: correspondirijg"f to a standard error 1-635 per cent.,
a result gPamply sufficient accuracy, obtained without
the e@]ﬁation of the algebraical expressions for

qqa};\tity of information.

\}} :3. Test of Homogeneity of Evidence used in Estimation

When diverse data throw light on what is theoreti-
cally the same quantity, the evidence from different
sources may be combined, as in the last Section, to

rovide a single estimate based on the whole of the
evidence. The need for such methods can scarcely be
overlooked. In practical research, however, it is
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often of equal or greater importance to test whether
the different sources of information fully concur in
the estimate towards which they lead, or whether, on
the contrary, this is a compromise between bodies of
evidence which are significantly discrepant. We shall
now show how a x® test of homogeneity may bel’
applied, making use of the same computatiopgl
procedure as that employed in finding the combined
estimate. ~\

In tetrasomic inheritance each chromesome is
capable of pairing, not with a single mate, but with
any other of the set of four homologous chromosomes
to which it belongs. If different pdr¥s of it pair with
different partners it is possible fe¥(the two homologous
genes carried by a single gamete to have been in
origin identical. The prg’péi‘tion of such gametes
will be designated by axift respect of any particular
factor. It is thus pogsible for a plant containing one
dominant gene, outyof the four present, to transmit
two such genes fi'the same gamete. The frequencies
with which it(transmits o, 1 and 2 dominant genes
being then*24a, 2—2a, and « out of 4. The corres-
ponding ffequencies for a duplex plant {carrying two
dominant genes) will be 1-+20, 4—4e, and 1429,
ousbf 6. : '

~OFor a gene determining top-necrosis of potato

\plants grafted with a scion infected with virus X,
Cadman gives data from four sources : the backcross
and intercross progenies of simplex plants, and the
backeross and intercross progenies from duplex plants.
These are as shown in Table 73.

From these data we may estimate the magnitude
of o, and test the homogeneity of the evidence. A
standard form of calculation is shown in Table 74.
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Values of a, -120 and ‘122, are sufficiently closely
approximate to give both an improved joint estimate

TABLE %3
Necrotic. Non-necrotic. Total. |
.\\\
Simplex plants{Backcross . 762 842 1604 40
Intercross . 122 41 163N
Duplex plants {Backcross 144 B AN 182
Intercross 122 o ¢4 132
AN
TABLE 74 &
\&) _
\J )
@ = ‘IzZ0. ’ﬂ' =132, I oYl oyl
. - oy i -
Simplex backcross . :f’ N
S4zf(z+a) . - - | 39RI08 396:7955
—y62{{2—a) - . . | 78053191 —405°7508
D . . ., ANt —8-9553 | 40370} 1990
Simplex intercross— \\ ’
$2/{2-+8) . 38-6792 38:6428 5135
—244(z+-a){16— (240} - | — 44955° —45°0346
D . 4 \' —6-2798 | —6-3018 | 560 w2gh
Duplex backerGss=
76f(1-¥2a) . . . 6172003 610032
—-288{(5%2&} . . .| —6o'goqz | --6o-555E
D"f.‘:”. . . + 7861 43381 | 124°0 0023
Duplex intercross—
A \d 40f(1+2a) 32-2481 321543 10084
\,’—488(1+2a){36—(1+2a)2} —17-5588 | —17:6200 ]
D . . . . .| 146003 +H14°5337 82-8 | 25§11
s A —_—
. Total +1-0503 —-2733 | 6658 |— 0001 — 000l
¥ | 34819 16114
] 3 1
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of a, 12:16 per cent., and the amount of information,
1, provided by the several parts of the data. These
are given sufficiently nearly by dividing the difference
between the discrepancies found for these two estimates
by ‘002, (Table 74.)
The amount of information is estimated for

a = I2-1 per cent., near to the true value. At e
true value x? = D¥I, as shown in section 57;;~; 1y
this case we add the contributions from the separate
parts of the data, subtracting that for the:'@&ta’ as a
whole, which is almost negligible. In. ¢ table the

values of D used are for « = 122 ; the reader may
be interested to make the test using those fora = -120,

It should be noted that thelgxact equivalence,
demonstrated in Section 57, rgqilires that I from each
batch of data should be calgulated as the amount of
information expected fram the total number of
observations in each(batch. Z.g. for the simple
backcross [ woul;:l\“}be 1604/(4—a)®. This process
gives amounts of\information slightly different from
those used in, T}xble 74, namely, for the four sections,
4025, 56-70523-0, and 61-302, or 6435 in all. The
correspondi ng values of D/ are then -1992, -7204,
-0023pa1 3-4457, with a total x* of 4-3675. These
lastywdlues check exactly with the ‘contributions to x*
4dund by calculating the expected numbers in each
Nof the eight classes enumerated. The discrepancy
between the two methods of calculating x? is due
to errors of random sampling, and tends to zero as
the size of the sample is increased ; both methods
therefore tend to give the theoretical x? distribution
for large samples of homogeneous material, and
there appears to be no good reason for preferring
one to the other. The method of this Section is
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available, however, when estimation 15 based on
measurements and not on frequencies, so that no
alternative value based on frequencies can be
calculated.

The test is applied both for all three degrees of
freedom among the four kinds of data, and for the
one degree of freedom contrasting simplex with
duplex parents. On both tests the homogeneity &)
satisfactory, though we should perhaps wishto
repeat the test with a larger amount of infg*‘\i'rfation
‘a1 all than the 665-8 units here available. < o

P

58. Summary of Principles”

In any problem of estimationiariumerable methods
may be invented arbitrarily, @ll-of which will tend to
* give the correct results .48 the available data are
increased indefinitely. Bach of these methods supplies
a formula from which a statistic, intended as an
estimate of the unknown, can be calculated from the
observed frequencies. These statistics are of very
different valge:’
A testlof five such statistics in a simple genetical
problef has shown that a particular group of them
give elosely concordant results, while the estimates

obtdined by the cemainder are discrepant. This dis-

“\¢fepancy is particularly marked in the misleading

values found for x*.

An examination of the sampling errors shows that
the concordant group have in large samples a variance
equal to that of the maximum likelihood solution, and
therefore as small as possible. These are efficient
statistics ; the variances of the inefficient statistics are
larger, and may be so large that their values are quite
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inconsistent with the data from which they are
derived.

~ Efficient statistics give closely equivalent results if
the samples are sufficiently large, but when the theory
of large samples no longer holds, such statistics, other,.
than that obtained by the method of maximurh®
likelihood, may fail. R\,

The measure of discrepancy, x®, may be dwided
into two parts, one measuring the real djs.’é’fépancy
between observation and hypothesis, whiléthe other
measures merely the discrepancy between the value
adopted and that given by the meghotl of maximum
likelihood. Using this fact, the hmogeneity of data
drawn from various sources fhay be tested in the
process of obtaining the esj;iﬁmﬁe.

The amount of inforafation supplied by the data
is capable of exact meaStirement, and the fraction of
the information avaalable which is utilised by any
efficient statis}:iéi.f:an thereby be calculated. The
same method\ may, though more laboriously, be
applied to gqtiljjare efficient statistics when the sample
of data ig\éméll.

Theymethod of maximum likelihood is directly

. app}(éaB]e to fragmentary data, of which part is less
completely classified than the remainder. = Each
<‘fréction then contributes to the total amount of
information utilised, according to the completeness
with which it is classified. The knowledge of the
amount of information supplied by the different
fractions may be profitably utilised in planning the
allocation of labour, and other resources, to observa-
tions of different kinds.
It will be readily understood that the thorough
investigation which we have given to three somewhat
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slight genetical examples is not all necessary to their
practical treatment. Its purpose has been to elucidate
principles which are applicable to all problems involv-
ing statistical estimation. In many cases one need
do no more than solve, at least to a good approxima-
tion the equation of maximum likelihood, and calculate

the sampling variance of the estimate so obtained. '\\\
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